163 resultados para CRYSTALLINE RUO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The asymmetric unit of the title co-crystalline 1:2 adduct C12H12N2O2 . 2(C6H3N3O6) contains two independent molecules of bis(4-aminophenyl)sulfone (the drug Dapsone) and four molecules of 1,3,5-trinitrobenzene and is extended into a two-dimensional hydrogen-bonded network structure through amino N-H...O hydrogen-bonding associations with nitro O- atom acceptors. In the two independent Dapsone molecules the inter-ring dihedral angles are 69.0(2) and 63.59(11)deg. Aromatic pi-pi interactions are also found between one of the Dapsone aromatic rings and a trinitrobenzene ring [minimum ring centroid separation 3.576(5)Ang.]. A 4-aminophenyl ring moiety of one of the Dapsone molecules and two nitro groups of a trinitrobenzene are disordered in a 50:50 ratio.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title co-crystalline adduct of the drug Dapsone with 3,5-dinitrobenzoic acid, C~12~H~12~N~2~O~2~S . C~7~H~4~N~4~O~6~, the dihedral angle between the two aromatic rings of the Dapsone molecule is 75.4(2)deg. and those between these rings and that of the 3,5-dinitrobenzoic acid are 64.5(2) and 68.4(2)deg. A strong inter-species carboxylic acid O-H---N(amine) hydrogen-bond is found, which together with intermolecular amine N-H...O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors as well as weak pi-pi interactions between one of the Dapsone phenyl rings and the 3,5-dinitrobenzoic acid ring [minimum ring centroid separation 3.774(2)Ang.], give a two-dimensional network structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: James Clerk Maxwell is usually recognized as being the first, in 1854, to consider using inhomogeneous media in optical systems. However, some fifty years earlier Thomas Young, stimulated by his interest in the optics of the eye and accommodation, had already modeled some applications of gradient-index optics. These applications included using an axial gradient to provide spherical aberration-free optics and a spherical gradient to describe the optics of the atmosphere and the eye lens. We evaluated Young’s contributions. Method: We attempted to derive Young’s equations for axial and spherical refractive index gradients. Raytracing was used to confirm accuracy of formula. Results: We did not confirm Young’s equation for the axial gradient to provide aberration-free optics, but derived a slightly different equation. We confirmed the correctness of his equations for deviation of rays in a spherical gradient index and for the focal length of a lens with a nucleus of fixed index surrounded by a cortex of reducing index towards the edge. Young claimed that the equation for focal length applied to a lens with part of the constant index nucleus of the sphere removed, such that the loss of focal length was a quarter of the thickness removed, but this is not strictly correct. Conclusion: Young’s theoretical work in gradient-index optics received no acknowledgement from either his contemporaries or later authors. While his model of the eye lens is not an accurate physiological description of the human lens, with the index reducing least quickly at the edge, it represented a bold attempt to approximate the characteristics of the lens. Thomas Young’s work deserves wider recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two minerals borickyite and delvauxite CaFe3+4(PO4,SO4)2(OH)8•4-6H2O have the same formula. Are the minerals identical or different? The minerals borickyite and delvauxite have been characterised by Raman spectroscopy. The minerals are related to the minerals diadochite and destinezite. Both minerals are amorphous. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The minerals are often X-ray non-diffracting. The minerals are found in soils and may be described as ‘colloidal’ minerals. Vibrational spectroscopy enables an assessment of the molecular structure of borickyite and delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths. The two minerals show differing spectra and must be considered as different minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the molecular dynamics (MD) method, the single-crystalline copper nanowire with different surface defects is investigated through tension simulation. For comparison, the MD tension simulations of perfect nanowire are firstly carried out under different temperatures, strain rates, and sizes. It has concluded that the surface-volume ratio significantly affects the mechanical properties of nanowire. The surface defects on nanowires are then systematically studied in considering different defect orientation and distribution. It is found that the Young’s modulus is insensitive of surface defects. However, the yield strength and yield point show a significant decrease due to the different defects. Different defects are observed to serve as a dislocation source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decade, Ionic Liquids (ILs) have been used for the dissolution and derivatization of isolated cellulose. This ability of ILs is now sought for their application in the selective dissolution of cellulose from lignocellulosic biomass, for the manufacture of cellulosic ethanol. However, there are significant knowledge gaps in the understanding of the chemistry of the interaction of biomass and ILs. While imidazolium ILs have been used successfully to dissolve both isolated crystalline cellulose and components of lignocellulosic biomass, phosphonium ILs have not been sufficiently explored for the use in dissolution of lignocellulosic biomass. This thesis reports on the study of the chemistry of sugarcane bagasse with phosphonium ILs. Qualitative and quantitative measurements of biomass components dissolved in the phosphonium ionic liquids (ILs), trihexyltetradecylphosphonium chloride ([P66614]Cl) and tributylmethylphosphonium methylsulphate ([P4441]MeSO4) are obtained using attenuated total reflectance-Fourier Transform Infra Red (FTIR). Absorption bands related to cellulose, hemicelluloses and lignin dissolution monitored in situ in biomass-IL mixtures indicate lignin dissolution in both ILs and some holocellulose dissolution in the hydrophilic [P4441]MeSO4. The kinetics of lignin dissolution reported here indicate that while dissolution in the hydrophobic IL [P66614]Cl appears to follow an accepted mechanism of acid catalysed β-aryl ether cleavage, dissolution in the hydrophilic IL [P4441]MeSO4 does not appear to follow this mechanism and may not be followed by condensation reactions (initiated by reactive ketones). The quantitative measurement of lignin dissolution in phosphonium ILs based on absorbance at 1510 cm-1 has demonstrated utility and greater precision than the conventional Klason lignin method. The cleavage of lignin β-aryl ether bonds in sugarcane bagasse by the ionic liquid [P66614]Cl, in the presence of catalytic amounts of mineral acid. (ca. 0.4 %). The delignification process of bagasse is studied over a range of temperatures (120 °C to 150 °C) by monitoring the production of β-ketones (indicative of cleavage of β-aryl ethers) using FTIR spectroscopy and by compositional analysis of the undissolved fractions. Maximum delignification is obtained at 150 °C, with 52 % of lignin removed from the original lignin content of bagasse. No delignification is observed in the absence of acid which suggests that the reaction is acid catalysed with the IL solubilising the lignin fragments. The rate of delignification was significantly higher at 150 °C, suggesting that crossing the glass transition temperature of lignin effects greater freedom of rotation about the propanoid carbon-carbon bonds and leads to increased cleavage of β-aryl ethers. An attempt has been made to propose a probable mechanism of delignifcation of bagasse with the phosphonuim IL. All polymeric components of bagasse, a lignocellulosic biomass, dissolve in the hydrophilic ionic liquid (IL) tributylmethylphosphonium methylsulfate ([P4441]MeSO4) with and without a catalytic amount of acid (H2SO4, ca. 0.4 %). The presence of acid significantly increases the extent of dissolution of bagasse in [P4441]MeSO4 (by ca. 2.5 times under conditions used here). The dissolved fractions can be partially recovered by the addition of an antisolvent (water) and are significantly enriched in lignin. Unlike acid catalysed dissolution in the hydrophobic IL tetradecyltrihexylphosphonium chloride there is little evidence of cleavage of β-aryl ether bonds of lignin dissolving in [P4441]MeSO4 (with and without acid), but this mechanism may play some role in the acid catalysed dissolution. The XRD of the undissolved fractions suggests that the IL may selectively dissolve the amorphous cellulose component, leaving behind crystalline material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the potential for Fe mobilization and greenhouse gas (GHG, e.g. CO2, and CH4) evolution in SEQ soils associated with a range of plantation forestry practices and water-logged conditions. Intact, 30-cm-deep soil cores collected from representative sites were saturated and incubated for 35 days in the laboratory, with leachate and headspace gas samples periodically collected. Minimal Fe dissolution was observed in well-drained sand soils associated with mature, first-rotation Pinus and organic Fe complexation, whereas progressive Fe dissolution occurred over 14 days in clear-felled and replanted Pinus soils with low organic matter and non-crystalline Fe fractions. Both CO2 and CH4 effluxes were relatively lower in clear-felled and replanted soils compared with mature, first-rotation Pinus soils, despite the lack of statistically significant variations in total GHG effluxes associated with different forestry practices. Fe dissolution and GHG evolution in low-lying, water-logged soils adjacent to riparian and estuarine, native-vegetation buffer zones were impacted by mineral and physical soil properties. Highest levels of dissolved Fe and GHG effluxes resulted from saturation of riparian loam soils with high Fe and clay content, as well as abundant organic material and Fe-metabolizing bacteria. Results indicate Pinus forestry practices such as clear-felling and replanting may elevate Fe mobilization while decreasing CO2 and CH4 emissions from well-drained, SEQ plantation soils upon heavy flooding. Prolonged water-logging accelerates bacterially mediated Fe cycling in low-lying, clay-rich soils, leading to substantial Fe dissolution, organic matter mineralization, and CH4 production in riparian native-vegetation buffer zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO 2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H 4SiO 4, HCO 3 -, Mg 2+, Na +, Ca 2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vapour phase assembly has been used for the first time to prepare co-crystals in which the primary intermolecular interaction is halogen bonding. Co-crystals of the nitroxide 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and 1,2-diiodotetrafluorobenzene (1,2-DITFB) are readily formed under standard sublimation conditions. Single crystal X-ray diffraction confirmed the structure of a 2:2 cyclic tetramer, (TMIO)2·(1,2-DITFB)2, which exhibits a new halogen bonding motif, with each nitroxide oxygen atom accepting two halogen bonds. Powder X-ray diffraction confirmed the homogeneity of the bulk sample. The crystalline complex was further characterized in the solid state using thermal analysis and vibrational spectroscopy (infrared and Raman). Density functional theory calculations were also used to evaluate the enthalpy of formation, electrostatic potential and unpaired electron density of the complex. These findings illustrate the preparation of co-crystals where solution state methodology is problematic and the potential of this approach for the formation of novel organic spin systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mineral xonotlite Ca 6Si 6O 17(OH) 2 is a crystalline calcium silicate hydrate which is widely used in plaster boards and in many industrial applications. The structure of xonotlite is best described as having a dreierdoppelketten silicate structure, and describes the repeating silicate trimer which forms the silicate chains, and doppel indicating that two chains combine. Raman bands at 1042 and 1070 cm -1 are assigned to the SiO stretching vibrations of linked units of Si 4O 11 units. Raman bands at 961 and 980 cm -1 serve to identify Si 3O 10 units. The broad Raman band at 862 cm -1 is attributed to hydroxyl deformation modes. Intense Raman bands at 593 and 695 cm -1 are assigned to OSiO bending vibrations. Intense Raman bands at 3578, 3611, 3627 and 3665 cm -1 are assigned to OH stretching vibrations of the OH units in xonotlite. Infrared spectra are in harmony with the Raman spectra. Raman spectroscopy with complimentary infrared spectroscopy enables the characterisation of the building material xonotlite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the author proposed and developed gas sensors made of nanostructured WO3 thin film by a thermal evaporation technique. This technique gives control over film thickness, grain size and purity. The device fabrication, nanostructured material synthesis, characterization and gas sensing performance have been undertaken. Three different types of nanostructured thin films, namely, pure WO3 thin films, iron-doped WO3 thin films by co-evaporation and Fe-implanted WO3 thin films have been synthesized. All the thin films have a film thickness of 300 nm. The physical, chemical and electronic properties of these films have been optimized by annealing heat treatment at 300ºC and 400ºC for 2 hours in air. Various analytical techniques were employed to characterize these films. Atomic Force Microscopy and Transmission Electron Microscopy revealed a very small grain size of the order 5-10 nm in as-deposited WO3 films, and annealing at 300ºC or 400ºC did not result in any significant change in grain size. X-ray diffraction (XRD) analysis revealed a highly amorphous structure of as-deposited films. Annealing at 300ºC for 2 hours in air did not improve crystallinity in these films. However, annealing at 400ºC for 2 hours in air significantly improved the crystallinity in pure and iron-doped WO3 thin films, whereas it only slightly improved the crystallinity of iron-implanted WO3 thin film as a result of implantation. Rutherford backscattered spectroscopy revealed an iron content of 0.5 at.% and 5.5 at.% in iron-doped and iron-implanted WO3 thin films, respectively. The RBS results have been confirmed using energy dispersive x-ray spectroscopy (EDX) during analysis of the films using transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) revealed significant lowering of W 4f7/2 binding energy in all films annealed at 400ºC as compared with the as-deposited and 300ºC annealed films. Lowering of W 4f7/2 is due to increase in number of oxygen vacancies in the films and is considered highly beneficial for gas sensing. Raman analysis revealed that 400ºC annealed films except the iron-implanted film are highly crystalline with significant number of O-W-O bonds, which was consistent with the XRD results. Additionally, XRD, XPS and Raman analyses showed no evidence of secondary peaks corresponding to compounds of iron due to iron doping or implantation. This provided an understanding that iron was incorporated in the host WO3 matrix rather than as a separate dispersed compound or as catalyst on the surface. WO3 thin film based gas sensors are known to operate efficiently in the temperature range 200ºC-500 ºC. In the present study, by optimizing the physical, chemical and electronic properties through heat treatment and doping, an optimum response to H2, ethanol and CO has been achieved at a low operating temperature of 150ºC. Pure WO3 thin film annealed at 400ºC showed the highest sensitivity towards H2 at 150ºC due to its very small grain size and porosity, coupled with high number of oxygen vacancies, whereas Fe-doped WO3 film annealed at 400ºC showed the highest sensitivity to ethanol at an operating temperature of 150ºC due to its crystallinity, increased number of oxygen vacancies and higher degree of crystal distortions attributed to Fe addition. Pure WO3 films are known to be insensitive to CO, but iron-doped WO3 thin film annealed at 300ºC and 400ºC showed an optimum response to CO at an operating temperature of 150ºC. This result is attributed to lattice distortions produced in WO3 host matrix as a result of iron incorporation as substitutional impurity. However, iron-implanted WO3 thin films did not show any promising response towards the tested gases as the film structure has been damaged due to implantation, and annealing at 300ºC or 400ºC was not sufficient to induce crystallinity in these films. This study has demonstrated enhanced sensing properties of WO3 thin film sensors towards CO at lower operating temperature, which was achieved by optimizing the physical, chemical and electronic properties of the WO3 film through Fe doping and annealing. This study can be further extended to systematically investigate the effects of different Fe concentrations (0.5 at.% to 10 at.%) on the sensing performance of WO3 thin film gas sensors towards CO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal structures of the 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the monocyclic heteroaromatic carboxylic acids, isonicotinic acid, picolinic acid, dipicolinic acid and pyrazine-2,3-dicarboxylic acid have been determined at 200 K and their hydrogen-bonding patterns examined. The compounds are respectively anhydrous 4-carbamoylpiperidinium pyridine-4-carboxylate (1), the partial hydrate 4-carbamoylpiperidinium pyridine-2-carboxylate 0.25 water (2), the solvate 4-carbamoylpiperidinium 6-carboxypyridine-2-carboxylate methanol monosolvate (3), and anhydrous 4-carbamoylpiperidinium 3-carboxypyrazine-2-carboxylate (4). In compounds 1 and 3, hydrogen-bonding interactions give two-dimensional sheet structures which feature enlarged cyclic ring systems, while in compounds 2 and 4, three-dimensional structures are found. The previously described cyclic R2/2(8) hydrogen-bonded amide-amide dimer is present in 2 and 3. The hydrogen-bonding in 2 involves the partial-occupancy water molecule while the structure of 4 is based on inter-linked homomolecular hydrogen-bonded cation-cation and anion-anion associated chains comprising head-to-tail interactions. This work further demonstrates the utility of the isonipecotamide cation in the generation of chemically stable hydrogen-bonded systems, particularly with aromatic carboxylate anions, providing crystalline solids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.