128 resultados para CARDIAC OUTPATIENT
Resumo:
The biosafety of carbon nanomaterial needs to be critically evaluated with both experimental and theoretical validations before extensive biomedical applications. In this letter, we present an analysis of the binding ability of two dimensional monolayer carbon nanomaterial on actin by molecular simulation to understand their adhesive characteristics on F-actin cytoskeleton. The modelling results indicate that the positively charged carbon nanomaterial has higher binding stability on actin. Compared to crystalline graphene, graphene oxide shows higher binding influence on actin when carrying 11 positive surface charge. This theoretical investigation provides insights into the sensitivity of actin-related cellular activities on carbon nanomaterial.
Resumo:
Background: Evidence demonstrates self-management programs are an effective approach to assist patients with chronic diseases such as type 2 diabetes or cardiac conditions to modify their lifestyle for better managing their conditions. Using information technology (IT) has great potential to support self-management programs and assist patients to fulfill their goals in managing their conditions more efficiently and effectively. Examples of different types of technology used in self-management programs that have limited research support include: text messages, telephone followup, web-based programs, and other internet-assisted education. But little is known about the applicability and feasiability of different forms of technology for patients with chronic diseases such as those with type 2 diabetes and critical cardiac conditions. Furthermore, although there is some evidence of the benefits of using IT in supporting self-management programs, further research on the use of IT in such programs is recommended. Objective: To develop and pilot test an integrated Cardiac- Diabetes Self-Management Program (CDSMP) incorporating telephone and text-message follow-up. Methods: A pilot study using randomised controlled trial is conducted in the coronary care unit (CCU) in a Brisbane metropolitan hospital in Australia to collect data on patients with type 2 diabetes admitted to CCU. The main outcomes included self-efficacy levels, knowledge, and quality of life. Results: Initial results reveal that patients with diabetes admitted to the CCU in the experimental group did improve their self-efficacy, and knowledge levels. Acknowledgements: This Project is funded by QUT Early Career Researcher Research Grant
Resumo:
Background: Cardiac patients with diabetes are at higher readmission rates (22%) compared to only 6% for those patients without diabetes. Evidence shows benefits of peer support and using information technology to improve chronic illness and achieve better health outcomes. However limited evidence suggests that cardiac or diabetes self-management programs incorporating peer supporters (patients with similar conditions) or telephone and text-messaging, have improved health outcomes and reduce health care utilisations. A multidisciplinary research team approach is crucial to accommodate the complex aspects of delivering intervention programs for these at-risk patients. However, challenges such as the inconsistency in significance of key concepts across research fields, as well as practical and operational issues within different contexts are often experienced. Aims: To develop an effective multidisciplinary team approach to deliver a peer support based cardiac-diabetes self-management program incorporating the preparation of lay personnel to provide telephone and text-messaging follow up support. Methods: The approach was used for a multidisciplinary project using randomised controlled trial. Results: The findings from multidisciplinary team approach reveal the feasibility of a Peer support based cardiac-diabetes self-management program.
Resumo:
The health system is one sector dealing with very large amount of complex data. Many healthcare organisations struggle to utilise these volumes of health data effectively and efficiently. Therefore, there is a need for very effective system to capture, collate and distribute this health data. There are number of technologies have been identified to integrate data from different sources. Data warehousing is one technology can be used to manage clinical data in the healthcare. This paper addresses how data warehousing assist to improve cardiac surgery decision making. This research used the cardiac surgery unit at the Prince Charles Hospital (TPCH) as the case study. In order to deal with other units efficiently, it is important to integrate disparate data to a single point interrogation. We propose implementing a data warehouse for the cardiac surgery unit at TPCH. The data warehouse prototype developed using SAS enterprise data integration studio 4.2 and data was analysed using SAS enterprise edition 4.3. This improves access to integrated clinical and financial data with, improved framing of data to the clinical context, giving potentially better informed decision making for both improved management and patient care.