69 resultados para Branch and Bound algorithms
Resumo:
This project constructed virtual plant leaf surfaces from digitised data sets for use in droplet spray models. Digitisation techniques for obtaining data sets for cotton, chenopodium and wheat leaves are discussed and novel algorithms for the reconstruction of the leaves from these three plant species are developed. The reconstructed leaf surfaces are included into agricultural droplet spray models to investigate the effect of the nozzle and spray formulation combination on the proportion of spray retained by the plant. A numerical study of the post-impaction motion of large droplets that have formed on the leaf surface is also considered.
Resumo:
In the past few years, the virtual machine (VM) placement problem has been studied intensively and many algorithms for the VM placement problem have been proposed. However, those proposed VM placement algorithms have not been widely used in today's cloud data centers as they do not consider the migration cost from current VM placement to the new optimal VM placement. As a result, the gain from optimizing VM placement may be less than the loss of the migration cost from current VM placement to the new VM placement. To address this issue, this paper presents a penalty-based genetic algorithm (GA) for the VM placement problem that considers the migration cost in addition to the energy-consumption of the new VM placement and the total inter-VM traffic flow in the new VM placement. The GA has been implemented and evaluated by experiments, and the experimental results show that the GA outperforms two well known algorithms for the VM placement problem.
Resumo:
Network topology and routing are two important factors in determining the communication costs of big data applications at large scale. As for a given Cluster, Cloud, or Grid system, the network topology is fixed and static or dynamic routing protocols are preinstalled to direct the network traffic. Users cannot change them once the system is deployed. Hence, it is hard for application developers to identify the optimal network topology and routing algorithm for their applications with distinct communication patterns. In this study, we design a CCG virtual system (CCGVS), which first uses container-based virtualization to allow users to create a farm of lightweight virtual machines on a single host. Then, it uses software-defined networking (SDN) technique to control the network traffic among these virtual machines. Users can change the network topology and control the network traffic programmingly, thereby enabling application developers to evaluate their applications on the same system with different network topologies and routing algorithms. The preliminary experimental results through both synthetic big data programs and NPB benchmarks have shown that CCGVS can represent application performance variations caused by network topology and routing algorithm.
Resumo:
Background Schizophrenia is associated with lower pre-morbid intelligence (IQ) in addition to (pre-morbid) cognitive decline. Both schizophrenia and IQ are highly heritable traits. Therefore, we hypothesized that genetic variants associated with schizophrenia, including copy number variants (CNVs) and a polygenic schizophrenia (risk) score (PSS), may influence intelligence. Method IQ was estimated with the Wechsler Adult Intelligence Scale (WAIS). CNVs were determined from single nucleotide polymorphism (SNP) data using the QuantiSNP and PennCNV algorithms. For the PSS, odds ratios for genome-wide SNP data were calculated in a sample collected by the Psychiatric Genome-Wide Association Study (GWAS) Consortium (8690 schizophrenia patients and 11 831 controls). These were used to calculate individual PSSs in our independent sample of 350 schizophrenia patients and 322 healthy controls. Results Although significantly more genes were disrupted by deletions in schizophrenia patients compared to controls (p = 0.009), there was no effect of CNV measures on IQ. The PSS was associated with disease status (R 2 = 0.055, p = 2.1 × 10 -7) and with IQ in the entire sample (R 2 = 0.018, p = 0.0008) but the effect on IQ disappeared after correction for disease status. Conclusions Our data suggest that rare and common schizophrenia-associated variants do not explain the variation in IQ in healthy subjects or in schizophrenia patients. Thus, reductions in IQ in schizophrenia patients may be secondary to other processes related to schizophrenia risk. © Cambridge University Press 2013.
Resumo:
Replacement of deteriorated water pipes is a capital-intensive activity for utility companies. Replacement planning aims to minimize total costs while maintaining a satisfactory level of service and is usually conducted for individual pipes. Scheduling replacement in groups is seen to be a better method and has the potential to provide benefits such as the reduction of maintenance costs and service interruptions. However, developing group replacement schedules is a complex task and often beyond the ability of a human expert, especially when multiple or conflicting objectives need to be catered for, such as minimization of total costs and service interruptions. This paper describes the development of a novel replacement decision optimization model for group scheduling (RDOM-GS), which enables multiple group-scheduling criteria by integrating new cost functions, a service interruption model, and optimization algorithms into a unified procedure. An industry case study demonstrates that RDOM-GS can improve replacement planning significantly and reduce costs and service interruptions.
Resumo:
SNPs discovered by genome-wide association studies (GWASs) account for only a small fraction of the genetic variation of complex traits in human populations. Where is the remaining heritability? We estimated the proportion of variance for human height explained by 294,831 SNPs genotyped on 3,925 unrelated individuals using a linear model analysis, and validated the estimation method with simulations based on the observed genotype data. We show that 45% of variance can be explained by considering all SNPs simultaneously. Thus, most of the heritability is not missing but has not previously been detected because the individual effects are too small to pass stringent significance tests. We provide evidence that the remaining heritability is due to incomplete linkage disequilibrium between causal variants and genotyped SNPs, exacerbated by causal variants having lower minor allele frequency than the SNPs explored to date.
Resumo:
Hospitals are critical elements of health care systems and analysing their capacity to do work is a very important topic. To perform a system wide analysis of public hospital resources and capacity, a multi-objective optimization (MOO) approach has been proposed. This approach identifies the theoretical capacity of the entire hospital and facilitates a sensitivity analysis, for example of the patient case mix. It is necessary because the competition for hospital resources, for example between different entities, is highly influential on what work can be done. The MOO approach has been extensively tested on a real life case study and significant worth is shown. In this MOO approach, the epsilon constraint method has been utilized. However, for solving real life applications, with a large number of competing objectives, it was necessary to devise new and improved algorithms. In addition, to identify the best solution, a separable programming approach was developed. Multiple optimal solutions are also obtained via the iterative refinement and re-solution of the model.
Resumo:
Accurately quantifying total greenhouse gas emissions (e.g. methane) from natural systems such as lakes, reservoirs and wetlands requires the spatial-temporal measurement of both diffusive and ebullitive (bubbling) emissions. Traditional, manual, measurement techniques provide only limited localised assessment of methane flux, often introducing significant errors when extrapolated to the whole-of-system. In this paper, we directly address these current sampling limitations and present a novel multiple robotic boat system configured to measure the spatiotemporal release of methane to atmosphere across inland waterways. The system, consisting of multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent operation, enables scientists to remotely evaluate the performance of sampling and modelling algorithms for real-world process quantification over extended periods of time. This paper provides an overview of the multi-robot sampling system including the vehicle and gas sampling unit design. Experimental results are shown demonstrating the system’s ability to autonomously navigate and implement an exploratory sampling algorithm to measure methane emissions on two inland reservoirs.
Resumo:
Virtual Machine (VM) management is an obvious need in today's data centers for various management activities and is accomplished in two phases— finding an optimal VM placement plan and implementing that placement through live VM migrations. These phases result in two research problems— VM placement problem (VMPP) and VM migration scheduling problem (VMMSP). This research proposes and develops several evolutionary algorithms and heuristic algorithms to address the VMPP and VMMSP. Experimental results show the effectiveness and scalability of the proposed algorithms. Finally, a VM management framework has been proposed and developed to automate the VM management activity in cost-efficient way.