115 resultados para Boron Solubility


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vibrational spectroscopy has been used to assess the structure of kotoite a borate mineral of magnesium which is isostructural with jimboite. The mineral is orthorhombic with point group: 2/m 2/m 2/m. The mineral has the potential as a new memory insulator material. The mineral has been characterised by a combination of Raman and infrared spectroscopy. The Raman spectrum is dominated by a very intense band at 835 cm−1, assigned to the symmetric stretching mode of tetrahedral boron. Raman bands at 919, 985 and 1015 cm−1 are attributed to the antisymmetric stretching modes of tetrahedral boron. Kotoite is strictly an hydrous borate mineral. An intense Raman band observed at 3559 cm−1 is attributed to the stretching vibration of hydroxyl units, more likely to be associated with the borate mineral hydroxyborate. The lack of observation of water bending modes proves the absence of water in the kotoite structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opening up a band gap and finding a suitable substrate material are two big challenges for building graphene-based nanodevices. Using state-of-the-art hybrid density functional theory incorporating long range dispersion corrections, we investigate the interface between optically active graphitic carbon nitride (g-C3N4) and electronically active graphene. We find an inhomogeneous planar substrate (g-C3N4) promotes electronrich and hole-rich regions, i.e., forming a well-defined electron−hole puddle, on the supported graphene layer. The composite displays significant charge transfer from graphene to the g-C3N4 substrate, which alters the electronic properties of both components. In particular, the strong electronic coupling at the graphene/g-C3N4 interface opens a 70 meV gap in g-C3N4-supported graphene, a feature that can potentially allow overcoming the graphene’s band gap hurdle in constructing field effect transistors. Additionally, the 2-D planar structure of g-C3N4 is free of dangling bonds, providing an ideal substrate for graphene to sit on. Furthermore, when compared to a pure g-C3N4 monolayer, the hybrid graphene/g-C3N4 complex displays an enhanced optical absorption in the visible region, a promising feature for novel photovoltaic and photocatalytic applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heteroatom doping on the edge of graphene may serve as an effective way to tune chemical activity of carbon-based electrodes with respect to charge carrier transfer in an aqueous environment. In a step towards developing mechanistic understanding of this phenomenon, we explore herein mechanisms of proton transfer from aqueous solution to pristine and doped graphene edges utilizing density functional theory. Atomic B-, N-, and O- doped edges as well as the native graphene are examined, displaying varying proton affinities and effective interaction ranges with the H3O+ charge carrier. Our study shows that the doped edges characterized by more dispersive orbitals, namely boron and nitrogen, demonstrate more energetically favourable charge carrier exchange compared with oxygen, which features more localized orbitals. Extended calculations are carried out to examine proton transfer from the hydronium ion in the presence of explicit water, with results indicating that the basic mechanistic features of the simpler model are unchanged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meyerhofferite is a calcium hydrated borate mineral with ideal formula: CaB3O3(OH)5�H2O and occurs as white complex acicular to crude crystals with length up to �4 cm, in fibrous divergent, radiating aggregates or reticulated and is often found in sedimentary or lake-bed borate deposits. The Raman spectrum of meyerhofferite is dominated by intense sharp band at 880 cm�1 assigned to the symmetric stretching mode of trigonal boron. Broad Raman bands at 1046, 1110, 1135 and 1201 cm�1 are attributed to BOH in-plane bending modes. Raman bands in the 900–1000 cm�1 spectral region are assigned to the antisymmetric stretching of tetrahedral boron. Distinct OH stretching Raman bands are observed at 3400, 3483 and 3608 cm�1. The mineral meyerhofferite has a distinct Raman spectrum which is different from the spectrum of other borate minerals, making Raman spectroscopy a very useful tool for the detection of meyerhofferite in sedimentary and lake bed deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The multilamellar structure of phospholipids, i.e. the surface amorphous layer (SAL) that covers the natural surface of articular cartilage, and hexagonal boron nitride (h-BN) on the surface of metal porous bearings are two prominent examples of the family of layered materials that possess the ability to deliver lamellar lubrication. This chapter presents the friction study that was conducted on the surfaces of cartilage and the metal porous bearing impregnated with oil (first generation) and with oil + h-BN (second generation). The porosity of cartilage is around 75% and those of metal porous bearings were 15–28 wt%. It is concluded that porosity is a critical factor in facilitating the excellent tribological properties of both articular cartilage and the porous metal bearings studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We predict here from first-principle calculations that finite-length (n,0) single walled carbon nanotubes (SWCNTs) with H-termination at the open ends displaying antiferromagnetic coupling when n is greater than 6. An opposite local gating effect of the spin states, i.e., half metallicity, is found under the influence of an external electric field along the direction of tube axis. Remarkably, boron doping of unpassivated SWCNTs at both zigzag edges is found to favor a ferromagnetic ground state, with the B-doped tubes displaying half-metallic behavior even in the absence of an electric field. Aside of the intrinsic interest of these results, an important avenue for development of CNT-based spintronic is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colemanite CaB3O4(OH)3 H2O is a secondary borate mineral formed from borax and ulexite in evaporate deposits of alkaline lacustrine sediments. The basic structure of colemanite contains endless chains of interlocking BO2(OH) triangles and BO3(OH) tetrahedrons with the calcium, water and extra hydroxide units interspersed between these chains. The Raman spectra of colemanite is characterized by an intense band at 3605 cm-1 assigned to the stretching vibration of OH units and a series of bands at 3182, 3300, 3389 and 3534 cm-1 assigned to water stretching vibrations. Infrared bands are observed in similar positions. The BO stretching vibrations of the trigonal and tetrahedral boron are characterized by Raman bands at 876, 1065 and 1084 cm-1. The OBO bending mode is defined by the Raman band at 611 cm-1. It is important to characterize the very wide range of borate minerals including colemanite because of the very wide range of applications of boron containing minerals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is a large number of boron containing minerals with water and/or hydroxyl units of which pinnoite MgB2O(OH)6 is one. Some discussion about the molecular structure of pinnoite exists in the literature. Whether water is involved in the structure is ill-determined. The molecular structure of pinnoite has been assessed by the combination of Raman and infrared spectroscopy. The Raman spectrum is characterized by an intense band at 900 cm−1 assigned to the BO stretching vibrational mode. A series of bands in the 1000–1320 cm−1 spectral range are attributed to BO antisymmetric stretching modes and in-plane bending modes. The infrared spectrum shows complexity in this spectral range. Multiple Raman OH stretching vibrations are found at 3179, 3399, 3554 and 3579 cm−1. The infrared spectrum shows a series of overlapping bands with bands identified at 3123, 3202, 3299, 3414, 3513 and 3594 cm−1. By using a Libowitzky type function, hydrogen bond distances were calculated. Two types of hydrogen bonds were identified based upon the hydrogen bond distance. It is important to understand the structure of pinnoite in order to form nanomaterials based upon the pinnoite structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have undertaken a study of the mineral inderite Mg(H4B3O7)(OH)⋅5H2O a hydrated hydroxy borate mineral of magnesium using scanning electron microscopy, thermogravimetry and vibrational spectroscopic techniques. The structure consists of [B3O3(OH)5]2-[B3O3(OH)5]2- soroborate groups and Mg(OH)2(H2O)4 octahedra interconnected into discrete molecules by the sharing of two OH groups. Thermogravimetry shows a mass loss of 47.2% at 137.5 °C, proving the mineral is thermally unstable. Raman bands at 954, 1047 and 1116 cm−1 are assigned to the trigonal symmetric stretching mode. The two bands at 880 and 916 cm−1 are attributed to the symmetric stretching mode of the tetrahedral boron. Both the Raman and infrared spectra of inderite show complexity. Raman bands are observed at 3052, 3233, 3330, 3392 attributed to water stretching vibrations and 3459 cm−1 with sharper bands at 3459, 3530 and 3562 cm−1 assigned to OH stretching vibrations. Vibrational spectroscopy is used to assess the molecular structure of inderite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of well-determined single crystal data for stoichiometric, or near-stoichiometric, metal hexaborides con-firm previously identified lattice parameter trends using powder diffraction. Trends for both divalent and trivalent forms suggest that potential new forms for synthesis include Sc and Mn hexaborides. Density Functional Theory (DFT) calculations for KB6, CaB6, YB6, LaB6, boron octahedral clusters and Sc and Mn forms, show that the shapes of bonding orbitals are defined by the boron framework. Inclusion of metal into the boron framework induces a reduction in energy ranging from 1 eV to 6 eV increasing with ionic charge. For metals with d1 character, such a shift in energy brings a doubly degenerate band section along the G-M reciprocal space direction within the conduction bands tangential to the Fermi surface. ScB6 band structure and density of states calculations show directional and gap characteristics similar to those of YB6 and LaB6. These calculations for ScB6 suggest it may be possible to realize superconductivity in this compound if synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solution chemistry plays a significant role in the rate and type of foulant formed on heated industrial surfaces. This paper describes the effect of sucrose, silica (SiO2), Ca2+ and Mg2+ ions, and trans-aconitic acid on the kinetics and solubility of SiO2 and calcium oxalate monohydrate (COM) in mixed salt solutions containing sucrose and refines models previously proposed. The developed SiO2 models show that sucrose and SiO2 concentrations are the main parameters that determine apparent order (n) and apparent rate of reaction (k) and SiO2 solubility over a 24 h period. The calcium oxalate solubility model shows that while increasing [Mg2+] increases COM solubility, the reverse is so with increasing sucrose concentrations. The role of solution species on COM crystal habit is discussed and the appearance of the uncommon (001) face is explained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples of YBa2Cu3O7-y+20 mol% Y2BaCuO5, with thicknesses ranging between 50-250 μm, have been melt processed and rapidly quenched from temperatures between 985 and 1100°C by immersing them in liquid nitrogen. The phase composition and microstructures of these samples have been characterised using a combination of X-ray diffractometry, optical microscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy. The quenched melt of samples quenched from temperatures greater than 985°C appears relatively homogeneous but consists of Ba2Cu3Ox (BC1.5) and BaCu2O2 (BC2) regions. At about 985°C, BaCuO2 (BC1) crystallises from the melt and most of the BC1.5 decomposes into BC1 and CuO or into BC1 and BC2. The crystallisation of BC1 induces segregation of elements in the melt and this is very significant for the melt texturing of YBCO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of the quenched melts of samples of Y123 and Y123+15-20 mol% Y211 with PtO2 and CeO2 additives have been examined with optical microscopy, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectrometry (EDS) and X-ray Diffractometry (XRD). Significantly higher temperatures are required for the formation of dendritic or lamellar eutectic patterns throughout the samples with PtO2 and CeO2 additives as compared to samples without additives. The BaCuO2 (BCl) phase appears first in solid form and, instead of rapidly melting, is slowly dissolving or decomposing in the oxygen depleted melt. PtO2 and CeO2 additives slow down or shift to higher temperatures the dissolution or decomposition process of BCl. A larger fraction of BCl in solid form explains why samples with additives have higher viscosities and hence lower diffusivities than samples without additives. There is also a reduction in the Y solubility to about half the value in samples without additives. The mechanism that limits the Ostwald ripening of the Y211 particles is correlated to the morphology of the quenched partial melt. It is diffusion controlled for a finely mixed morphology and interface-controlled when the melt quenches into dendritic or lamellar eutectic patterns. The change in the morphology of the Y211 particles from blocky to acicular is related to an equivalent undercooling of the Y-Ba-Cu-O partial melt, particularly through the crystallization of BCl.