71 resultados para Blunt Cone
Resumo:
Volcanic eruption centres of the mostly 4.5 Ma-5000 BP Newer Volcanics Province in the Hamilton area of southeastern Australia were examined in detail using a multifaceted approach, including ground truthing and analysis of ArcGIS Total Magnetic Intensity and seamless geology data, NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models and Google Earth satellite image interpretation. Sixteen eruption centres were recognised in the Hamilton area, including three previously unrecorded volcanoes-one of which, the Cas Maar, constitutes the northernmost maar-cone volcanic complex in the Western Plains subprovince. Seven previously allocated eruption centres were placed into question based on field and laboratory observations. Three phases of volcanic activity have been suggested by other authors and are interpreted to correlate with ages of >4 Ma, ca 2 Ma and <0.5 Ma, which may be further subdivided based on preservation of outcrop. Geochemical compositions of the dominantly basaltic products become increasingly alkaline and enriched in incompatible elements from Phases 1 to 2, with Phase 3 eruptions both covering the entire geochemical range and extending into increasingly enriched compositions. This research highlights the importance of a multifaceted approach to landform mapping and demonstrates that additional volcanic centres may yet be discovered in the Newer Volcanics Province
Resumo:
This study proposes an optimized approach of designing in which a model specially shaped composite tank for spacecrafts is built by applying finite element analysis. The composite layers are preliminarily designed by combining quasi-network design method with numerical simulation, which determines the ratio between the angle and the thickness of layers as the initial value of the optimized design. By adopting an adaptive simulated annealing algorithm, the angles and the numbers of layers at each angle are optimized to minimize the weight of structure. Based on this, the stacking sequence of composite layers is formulated according to the number of layers in the optimized structure by applying the enumeration method and combining the general design parameters. Numerical simulation is finally adopted to calculate the buckling limit of tanks in different designing methods. This study takes a composite tank with a cone-shaped cylinder body as example, in which ellipsoid head section and outer wall plate are selected as the object to validate this method. The result shows that the quasi-network design method can improve the design quality of composite material layer in tanks with complex preliminarily loading conditions. The adaptive simulated annealing algorithm can reduce the initial design weight by 30%, which effectively probes the global optimal solution and optimizes the weight of structure. It can be therefore proved that, this optimization method is capable of designing and optimizing specially shaped composite tanks with complex loading conditions.
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.
Resumo:
This work reports the effect of seed nanoparticle size and concentration effects on heterogeneous crystal nucleation and growth in colloidal suspensions. We examined these effects in the Au nanoparticle-seeded growth of Au-ZnO hetero-nanocrystals under synthesis conditions that generate hexagonal, cone-shaped ZnO nanocrystals. It was observed that small (~ 4 nm) Au seed nanoparticles form one-to-one Au-ZnO hetero dimers and that Au nanoparticle seeds of this size can also act as crystallization ‘catalysts’ that readily promote the nucleation and growth of ZnO nanocrystals. Larger seed nanoparticles (~9 nm, ~ 11 nm) provided multiple, stable ZnO-nucleation sites, generating multi-crystalline hetero trimers, tetramers and oligomers.
Resumo:
Purpose This study evaluated the impact of a daily and weekly image-guided radiotherapy protocols in reducing setup errors and setting of appropriate margins in head and neck cancer patients. Materials and methods Interfraction and systematic shifts for the hypothetical day 1–3 plus weekly imaging were extrapolated from daily imaging data from 31 patients (964 cone beam computed tomography (CBCT) scans). In addition, residual setup errors were calculated by taking the average shifts in each direction for each patient based on the first three shifts and were presumed to represent systematic setup error. The clinical target volume (CTV) to planning target volume (PTV) margins were calculated using van Herk formula and analysed for each protocol. Results The mean interfraction shifts for daily imaging were 0·8, 0·3 and 0·5 mm in the S-I (superior-inferior), L-R (left-right) and A-P (anterior-posterior) direction, respectively. On the other hand the mean shifts for day 1–3 plus weekly imaging were 0·9, 1·8 and 0·5 mm in the S-I, L-R and A-P direction, respectively. The mean day 1–3 residual shifts were 1·5, 2·1 and 0·7 mm in the S-I, L-R and A-P direction, respectively. No significant difference was found in the mean setup error for the daily and hypothetical day 1–3 plus weekly protocol. However, the calculated CTV to PTV margins for the daily interfraction imaging data were 1·6, 3·8 and 1·4 mm in the S-I, L-R and A-P directions, respectively. Hypothetical day 1–3 plus weekly resulted in CTV–PTV margins of 5, 4·2 and 5 mm in the S-I, L-R and A-P direction. Conclusions The results of this study show that a daily CBCT protocol reduces setup errors and allows setup margin reduction in head and neck radiotherapy compared to a weekly imaging protocol.
Resumo:
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using the four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Resumo:
- Introduction Heat-based training (HT) is becoming increasingly popular as a means of inducing acclimation before athletic competition in hot conditions and/or to augment the training impulse beyond that achieved in thermo-neutral conditions. Importantly, current understanding of the effects of HT on regenerative processes such as sleep and the interactions with common recovery interventions remain unknown. This study aimed to examine sleep characteristics during five consecutive days of training in the heat with the inclusion of cold-water immersion (CWI) compared to baseline sleep patterns. - Methods Thirty recreationally-trained males completed HT in 32 ± 1 °C and 60% rh for five consecutive days. Conditions included: 1) 90 min cycling at 40 % power at VO2max (Pmax) (90CONT; n = 10); 90 min cycling at 40 % Pmax with a 20 min CWI (14 ± 1 °C; 90CWI; n = 10); and 30 min cycling alternating between 40 and 70 % Pmax every 3 min, with no recovery intervention (30HIT; n = 10). Sleep quality and quantity was assessed during HT and four nights of 'baseline' sleep (BASE). Actigraphy provided measures of time in and out of bed, sleep latency, efficiency, total time in bed and total time asleep, wake after sleep onset, number of awakenings, and wakening duration. Subjective ratings of sleep were also recorded using a 1-5 Likert scale. Repeated measures analysis of variance (ANOVA) was completed to determine effect of time and condition on sleep quality and quantity. Cohen's d effect sizes were also applied to determine magnitude and trends in the data. - Results Sleep latency, efficiency, total time in bed and number of awakenings were not significantly different between BASE and HT (P > 0.05). However, total time asleep was significantly reduced (P = 0.01; d = 1.46) and the duration periods of wakefulness after sleep onset was significantly greater during HT compared with BASE (P = 0.001; d = 1.14). Comparison between training groups showed latency was significantly higher for the 30HIT group compared to 90CONT (P = 0.02; d = 1.33). Nevertheless, there were no differences between training groups for sleep efficiency, total time in bed or asleep, wake after sleep onset, number of awakenings or awake duration (P > 0.05). Further, cold-water immersion recovery had no significant effect on sleep characteristics (P > 0.05). - Discussion Sleep plays an important role in athletic recovery and has previously been demonstrated to be influenced by both exercise training and thermal strain. Present data highlight the effect of HT on reduced sleep quality, specifically reducing total time asleep due to longer duration awake during awakenings after sleep onset. Importantly, although cold water recovery accelerates the removal of thermal load, this intervention did not blunt the negative effects of HT on sleep characteristics. - Conclusion Training in hot conditions may reduce both sleep quantity and quality and should be taken into consideration when administering this training intervention in the field.
Resumo:
Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.