102 resultados para Blocks of concrete
Resumo:
As the boundaries between public and private, human and technology, digital and social, mediated and natural, online and offline become increasingly blurred in modern techno-social hybrid societies, sociology as a discipline needs to adapt and adopt new ways of accounting for these digital cultures. In this paper I use the social networking site Pinterest to demonstrate how people today are shaped by, and in turn shape, the digital tools they are assembled with. Digital sociology is emerging as a sociological subdiscipline that engages with the convergence of the digital and the social. However, there seems to be a focus on developing new methods for studying digital social life, yet a neglect of concrete explorations of its culture. I argue for the need for critical socio-cultural ‘thick description’ to account for the interrelations between humans and technologies in modern digitally mediated cultures.
Resumo:
The purpose of this study was to evaluate the concurrent validity of a modified version of the widely used previous day physical activity recall (PDPAR24) self-report instrument in a diverse sample of Australian adolescents comprising Aboriginal and Torres Strait Islanders (A&TSI) and non-indigenous high school students. A sample of 63 A&TSI and 59 non-indigenous high school students (N = 122) from five public secondary schools participated in the study. Participants completed the PDPAR-24 after wearing a seated electronic pedometer on the previous day. Significant positive correlations were observed between the self-reported physical activity variables (mean MET level, blocks of vigorous activity, and blocks of moderate-to-vigorous physical activity) and 24-h step counts. Validity coefficients (rho) ranged from 0.29 to 0.34 (p<0.05). A significant inverse correlation was observed for self-reported screen time and 24-h step count (rho = -0.19, p<0.05). Correlations for A&TSI students were equal to or greater than those observed for non-indigenous students. The PDPAR-24 instrument is a quick, unobtrusive, and cost-effective assessment tool. that would be useful for evaluating physical activity and sedentary behaviour in population-based studies. (C) 2006 Sports Medicine Australia.
Resumo:
As the boundaries between public and private, human and technology, digital and social, mediated and natural, online and offline become increasingly blurred in modern techno-social hybrid societies, sociology as a discipline needs to adapt and adopt new ways of accounting for these digital cultures. In this paper I use the social networking site Pinterest to demonstrate how people today are shaped by, and in turn shape, the digital tools they are assembled with. Digital sociology is emerging as a sociological subdiscipline that engages with the convergence of the digital and the social. However, there seems to be a focus on developing new methods for studying digital social life, yet a neglect of concrete explorations of its culture. I argue for the need for critical socio-cultural ‘thick description’ to account for the interrelations between humans and technologies in modern digitally mediated cultures.
Resumo:
The purpose of this study was to examine the validity of the 3-Day Physical Activity Recall (3DPAR) self-report instrument in a sample of eighth and ninth grade girls (n = 70, 54.3% white, 37.1% African American). Criterion measures of physical activity were derived using the CSA 7164 accelerometer. Participants wore a CSA monitor for 7 consecutive days and completed the self-report physical activity recall for the last 3 of those days. Self-reported total METs, 30-min blocks of MVPA, and 30-min blocks of VPA were all significantly correlated with analogous CSA variables for 7 days (r = 0.35-0.51; P < 0.01) and 3 days (r = 0.27-0.46; P < 0.05) of monitoring. The results indicate that the 3DPAR is a valid instrument for assessing overall, vigorous, and moderate to vigorous physical activity in adolescent girls.
Resumo:
This study examined the tracking of selected measures of physical activity, inactivity, and fitness in a cohort of rural youth. Students (N = 181, 54.7% female, 63.5% African American) completed test batteries during their fifth-(age = 10.7 +/- 0.7 years), sixth-, and seventh-grade years. The Previous Day Physical Activity Recall (PDPAR) was used to assess 30-min blocks of vigorous physical activity (VPA), moderate-to-vigorous physical activity (MVPA), TV watching and other sedentary activities, and estimated energy expenditure (EE). Fitness measures included the PWC 170 cycle ergometer test, strength tests, triceps skinfold thickness, and BMI. Intraclass correlation coefficients (ICCs) for VPA, MVPA, and after-school EE ranged from 0.63 to 0.78. ICCs ranged from 0.49 to 0.71 for measures of inactivity and from 0.78 to 0.82 for the fitness measures. These results indicate that measures of physical activity, inactivity, and physical fitness tend to track during the transition from elementary to middle school.
Resumo:
In this paper we analyse the role of some of the building blocks of SHA-256. We show that the disturbance-correction strategy is applicable to the SHA-256 architecture and we prove that functions Σ, σ are vital for the security of SHA-256 by showing that for a variant without them it is possible to find collisions with complexity 2^64 hash operations. As a step towards an analysis of the full function, we present the results of our experiments on Hamming weights of expanded messages for different variants of the message expansion and show that there exist low-weight expanded messages for XOR-linearised variants.
Resumo:
This study was designed to identify the neural networks underlying automatic auditory deviance detection in 10 healthy subjects using functional magnetic resonance imaging. We measured blood oxygenation level-dependent contrasts derived from the comparison of blocks of stimuli presented as a series of standard tones (50 ms duration) alone versus blocks that contained rare duration-deviant tones (100 ms) that were interspersed among a series of frequent standard tones while subjects were watching a silent movie. Possible effects of scanner noise were assessed by a “no tone” condition. In line with previous positron emission tomography and EEG source modeling studies, we found temporal lobe and prefrontal cortical activation that was associated with auditory duration mismatch processing. Data were also analyzed employing an event-related hemodynamic response model, which confirmed activation in response to duration-deviant tones bilaterally in the superior temporal gyrus and prefrontally in the right inferior and middle frontal gyri. In line with previous electrophysiological reports, mismatch activation of these brain regions was significantly correlated with age. These findings suggest a close relationship of the event-related hemodynamic response pattern with the corresponding electrophysiological activity underlying the event-related “mismatch negativity” potential, a putative measure of auditory sensory memory.
Optimum position of steel outrigger system for high rise composite buildings subjected to wind loads
Resumo:
The responses of composite buildings under wind loads clearly become more critical as the building becomes taller, less stiff and more lightweight. When the composite building increases in height, the stiffness of the structure becomes more important factor and introduction to belt truss and outrigger system is often used to provide sufficient lateral stiffness to the structure. Most of the research works to date is limited to reinforced concrete building with outrigger system of concrete structure, simple building plan layout, single height of a building, one direction wind and single level of outrigger arrangement. There is a scarcity in research works about the effective position of outrigger level on composite buildings under lateral wind loadings when the building plan layout, height and outrigger arrangement are varied. The aim of this paper is to determine the optimum location of steel belt and outrigger systems by using different arrangement of single and double level outrigger for different size, shape and height of composite building. In this study a comprehensive finite element modelling of composite building prototypes is carried out, with three different layouts (Rectangular, Octagonal and L shaped) and for three different storey (28, 42 and 57-storey). Models are analysed for dynamic cyclonic wind loads with various combination of steel belt and outrigger bracings. It is concluded that the effectiveness of the single and double level steel belt and outrigger bracing are varied based on their positions for different size, shape and height of composite building.
Resumo:
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of preexisting low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or microfaulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits composed of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution data set to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes.
Resumo:
Background: Migraine causes crippling attacks of severe head pain along with associated nausea, vomiting, photophobia and/or phonophobia. The aim of this study was to investigate single nucleotide polymorphisms (SNPs) in the adenosine deaminase, RNA-specific, B1 (ADARB1)and adenosine deaminase, RNA specific, B2 (ADARB2) genes in an Australian case-control Caucasian population for association with migraine. Both candidate genes are highly expressed in the central nervous system (CNS) and fit criteria for migraine neuropathology. SNPs in the ADARB2 gene were previously found to be positively associated with migraine in a pedigree-based GWAS using the genetic isolate of Norfolk Island, Australia. The ADARB1 gene was also chosen for investigation due to its important function in editing neurotransmitter receptor transcripts. Methods: Four SNPs in ADARB1 and nine in ADARB2 were selected by inspecting blocks of LD in Haploview for genotyping using either TaqMan or Sequenom assays. These SNPs were genotyped in two-hundred and ninety one patients who satisfied the International Classification of Headache Disorders, ICHD-II 2004 diagnostic criteria for migraine and three-hundred and fourteen controls and PLINK was used for association testing. Results: Chi-square (χ2) analysis found no significant association between any of the SNPs tested in the ADARB1 and ADARB2 genes in this study and the occurrence of migraine. Conclusions: In contrast to findings that SNPs in the ADARB2 gene were positively associated with migraine in the Norfolk Island population, we find no evidence to support the involvement of RNA editing genes in migraine susceptibility in an Australian Caucasian population.
Resumo:
We introduce the design of a thermoresponsive nanoparticle via sacrificial micelle formation based on supramolecular host–guest chemistry. Reversible addition–fragmentation chain transfer (RAFT) polymerization was employed to synthesize well-defined polymer blocks of poly(N,N-dimethylacrylamide) (poly(DMAAm)) (Mn,SEC = 10 700 g mol–1, Đ = 1.3) and poly(N-isopropylacrylamide) (poly(NiPAAm)) (Mn,SEC = 39 700 g mol–1, Đ = 1.2), carrying supramolecular recognition units at the chain termini. Further, 2-methoxy-6-methylbenzaldehyde moieties (photoenols, PE) were statistically incorporated into the backbone of the poly(NiPAAm) block as photoactive cross-linking units. Host–guest interactions of adamantane (Ada) (at the terminus of the poly(NiPAAm/PE) chain) and β-cyclodextrin (CD) (attached to the poly(DMAAm chain end) result in a supramolecular diblock copolymer. In aqueous solution, the diblock copolymer undergoes micellization when heated above the lower critical solution temperature (LCST) of the thermoresponsive poly(NiPAAm/PE) chain, forming the core of the micelle. Via the addition of a 4-arm maleimide cross-linker and irradiation with UV light, the micelle is cross-linked in its core via the photoinduced Diels–Alder reaction of maleimide and PE units. The adamantyl–cyclodextrin linkage is subsequently cleaved by the destruction of the β-CD, affording narrowly distributed thermoresponsive nanoparticles with a trigger temperature close to 30 °C. Polymer chain analysis was performed via size exclusion chromatography (SEC), nuclear magnetic resonance (NMR) spectroscopy, and dynamic light scattering (DLS). The size and thermoresponsive behavior of the micelles and nanoparticles were investigated via DLS as well as atomic force microscopy (AFM).
Resumo:
Background The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) is the first of a series of annual updates of the GBD. Risk factor quantification, particularly of modifiable risk factors, can help to identify emerging threats to population health and opportunities for prevention. The GBD 2013 provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution. Methods Attributable deaths, years of life lost, years lived with disability, and disability-adjusted life-years (DALYs) have been estimated for 79 risks or clusters of risks using the GBD 2010 methods. Risk–outcome pairs meeting explicit evidence criteria were assessed for 188 countries for the period 1990–2013 by age and sex using three inputs: risk exposure, relative risks, and the theoretical minimum risk exposure level (TMREL). Risks are organised into a hierarchy with blocks of behavioural, environmental and occupational, and metabolic risks at the first level of the hierarchy. The next level in the hierarchy includes nine clusters of related risks and two individual risks, with more detail provided at levels 3 and 4 of the hierarchy. Compared with GBD 2010, six new risk factors have been added: handwashing practices, occupational exposure to trichloroethylene, childhood wasting, childhood stunting, unsafe sex, and low glomerular filtration rate. For most risks, data for exposure were synthesised with a Bayesian meta-regression method, DisMod-MR 2.0, or spatial-temporal Gaussian process regression. Relative risks were based on meta-regressions of published cohort and intervention studies. Attributable burden for clusters of risks and all risks combined took into account evidence on the mediation of some risks such as high body-mass index (BMI) through other risks such as high systolic blood pressure and high cholesterol. Findings All risks combined account for 57·2% (95% uncertainty interval [UI] 55·8–58·5) of deaths and 41·6% (40·1–43·0) of DALYs. Risks quantified account for 87·9% (86·5–89·3) of cardiovascular disease DALYs, ranging to a low of 0% for neonatal disorders and neglected tropical diseases and malaria. In terms of global DALYs in 2013, six risks or clusters of risks each caused more than 5% of DALYs: dietary risks accounting for 11·3 million deaths and 241·4 million DALYs, high systolic blood pressure for 10·4 million deaths and 208·1 million DALYs, child and maternal malnutrition for 1·7 million deaths and 176·9 million DALYs, tobacco smoke for 6·1 million deaths and 143·5 million DALYs, air pollution for 5·5 million deaths and 141·5 million DALYs, and high BMI for 4·4 million deaths and 134·0 million DALYs. Risk factor patterns vary across regions and countries and with time. In sub-Saharan Africa, the leading risk factors are child and maternal malnutrition, unsafe sex, and unsafe water, sanitation, and handwashing. In women, in nearly all countries in the Americas, north Africa, and the Middle East, and in many other high-income countries, high BMI is the leading risk factor, with high systolic blood pressure as the leading risk in most of Central and Eastern Europe and south and east Asia. For men, high systolic blood pressure or tobacco use are the leading risks in nearly all high-income countries, in north Africa and the Middle East, Europe, and Asia. For men and women, unsafe sex is the leading risk in a corridor from Kenya to South Africa. Interpretation Behavioural, environmental and occupational, and metabolic risks can explain half of global mortality and more than one-third of global DALYs providing many opportunities for prevention. Of the larger risks, the attributable burden of high BMI has increased in the past 23 years. In view of the prominence of behavioural risk factors, behavioural and social science research on interventions for these risks should be strengthened. Many prevention and primary care policy options are available now to act on key risks.
Resumo:
Model systems are critical to our understanding of self-assembly processes. As such, we have studied the surface self-assembly of a small and simple molecule, indole-2-carboxylic acid (I2CA). We combine density functional theory gas-phase (DFT) calculations with scanning tunneling microscopy to reveal details of I2CA assembly in two different solvents at the solution/solid interface, and on Au(111) in ultrahigh vacuum (UHV). In UHV and at the trichlorobenzene/highly oriented pyrolytic graphite (HOPG) interface, I2CA forms epitaxial lamellar structures based on cyclic OH⋯O carboxylic dimers. The structure formed at the heptanoic acid/HOPG interface is different and can be interpreted in a model where heptanoic acid molecules co-adsorb on the substrate with the I2CA, forming a bicomponent commensurate unit cell. DFT calculations of dimer energetics elucidate the basic building blocks of these structures, whereas calculations of periodic two-dimensional assemblies reveal the epitaxial effects introduced by the different substrates.
Resumo:
This study aims to help broaden the use of electronic portal imaging devices (EPIDs) for pre-treatment patient positioning verification, from photon-beam radiotherapy to photon- and electron-beam radiotherapy, by proposing and testing a method for acquiring clinicallyuseful EPID images of patient anatomy using electron beams, with a view to enabling and encouraging further research in this area. EPID images used in this study were acquired using all available beams from a linac configured to deliver electron beams with nominal energies of 6, 9, 12, 16 and 20 MeV, as well as photon beams with nominal energies of 6 and 10 MV. A widely-available heterogeneous, approximately-humanoid, thorax phantom was used, to provide an indication of the contrast and noise produced when imaging different types of tissue with comparatively realistic thicknesses. The acquired images were automatically calibrated, corrected for the effects of variations in the sensitivity of individual photodiodes, using a flood field image. For electron beam imaging, flood field EPID calibration images were acquired with and without the placement of blocks of water-equivalent plastic (with thicknesses approximately equal to the practical range of electrons in the plastic) placed upstream of the EPID, to filter out the primary electron beam, leaving only the bremsstrahlung photon signal. While the electron beam images acquired using a standard (unfiltered) flood field calibration were observed to be noisy and difficult to interpret, the electron beam images acquired using the filtered flood field calibration showed tissues and bony anatomy with levels of contrast and noise that were similar to the contrast and noise levels seen in the clinically acceptable photon beam EPID images. The best electron beam imaging results (highest contrast, signal-to-noise and contrast-to-noise ratios) were achieved when the images were acquired using the higher energy electron beams (16 and 20 MeV) when the EPID was calibrated using an intermediate (12 MeV) electron beam energy. These results demonstrate the feasibility of acquiring clinically-useful EPID images of patient anatomy using electron beams and suggest important avenues for future investigation, thus enabling and encouraging further research in this area. There is manifest potential for the EPID imaging method proposed in this work to lead to the clinical use of electron beam imaging for geometric verification of electron treatments in the future.
Introducing a new limit states design concept to railway concrete sleepers: An Australian experience
Resumo:
Over 50 years, a large number of research and development projects with respect to the use of cementitious and concrete materials for manufacturing railway sleepers have been significantly progressed in Australia, Europe, and Japan (Wang, 1996; Murray and Cai, 1998; Wakui and Okuda, 1999; Esveld, 2001; Freudenstein and Haban, 2006; Remennikov and Kaewunruen, 2008). Traditional sleeper materials are timber, steel, and concrete. Cost-efficiency, superior durability, and improved track stability are the main factors toward significant adoption of concrete materials for railway sleepers. The sleepers in a track system, as shown in Figure 1, are subjected to harsh and aggressive external forces and natural environments across a distance. Many systemic problems and technical issues associated with concrete sleepers have been tackled over decades. These include pre-mature failures of sleepers, concrete cancer or ettringite, abrasion of railseats and soffits, impact damages by rail machinery, bond-slip damage, longitudinal and lateral instability of track system, dimensional instability of sleepers, nuisance noise and vibration, and so on (Pfeil, 1997; Gustavson, 2002; Kaewunruen and Remennikov, 2008a,b, 2013). These issues are, however, becoming an emerging risk for many countries (in North and South Americas, Asia, and the Middle East) that have recently installed large volumes of concrete sleepers in their railway networks (Federal Railroad Administration, 2013). As a result, it is vital to researchers and practitioners to critically review and learn from previous experience and lessons around the world.