723 resultados para Biological Engineering


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND The engineering profession in Australia has failed to attract young women for the last decade or so despite all the effort that have gone into promoting engineering as a preferred career choice for girls. It is a missed opportunity for the profession to flourish as a heterogeneous team. Many traditional initiatives and programs have failed to make much impact or at best incremental improvement into attracting and retaining more women in the profession. The reasons why girls and young women in most parts of the world show little interest in engineering haven't changed, despite all the efforts to address them, the issue proposed here in this paper is with the perceptions of engineering in the community and the confidence to pursue it. This gender imbalance is detrimental for the engineering profession, and hence an action-based intervention strategy was devised by the Women in Engineering Qld Chapter of Engineers Australia in 2012 to change the perceptions of school girls by redesigning the engagement strategy and key messages. As a result, the “Power of Engineering Inc” (PoE) was established as a not-for-profit organisation, and is a collaborative effort between government, schools, universities, and industry. This paper examines a case study in changing the perceptions of year 9 and 10 school girls towards an engineering career. PURPOSE To evaluate and determine the effectiveness of an intervention in changing the perceptions of year 9 and 10 school girls about engineering career options, but specifically, “What were their perceptions of engineering before today and have those perceptions changed?” DESIGN/METHOD The inaugural Power of Engineering (PoE) event was held on International Women’s Day, Thursday 8 March 2012 and was attended by 131 high school female students (year 9 and 10) and their teachers. The key message of the day was “engineering gives you the power to change the world”. A questionnaire was conducted with the participating high school female students, collecting both quantitative and qualitative data. The survey instrument has not been validated. RESULTS The key to the success of the event was as a result of collaboration between all participants involved and the connection created between government, schools, universities and industry. Of the returned surveys (109 of 131), 91% of girls would now consider a career in engineering and 57% who had not considered engineering before the day would now consider a career in engineering. Data collected found significant numbers of negative and varying perceptions about engineering careers prior to the intervention. CONCLUSIONS The evidence in this research suggests that the intervention assisted in changing the perceptions of year 9 and 10 female school students towards engineering as a career option. Whether this intervention translates into actual career selection and study enrolment is to be determined. In saying this, the evidence suggests that there is a critical and urgent need for earlier interventions prior to students selecting their subjects for year 11 and 12. This intervention could also play its part in increasing the overall pool of students engaged in STEM education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposites are recently known to be among the most successful materials in biomedical applications. In this work we sought to fabricate fibrous scaffolds which can mimic the extra cellular matrix of cartilaginous connective tissue not only to a structural extent but with a mechanical and biological analogy. Poly(3-hydroxybutyrate) (P3HB) matrices were reinforced with 5, 10 and 15 %wt hydroxyapatite (HA) nanoparticles and electrospun into nanocomposite fibrous scaffolds. Mechanical properties of each case were compared with that of a P3HB scaffold produced in the same processing condition. Spectroscopic and morphological observations were used for detecting the interaction quality between the constituents. Nanoparticles rested deep within the fibers of 1 μm in diameter. Chemical interactions of hydrogen bonds linked the constituents through the interface. Maximum elastic modulus and mechanical strength was obtained with the presence of 5%wt hydroxyapatite nanoparticles. Above 10%wt, nanoparticles tended to agglomerate and caused the entity to lose its mechanical performance; however, viscoelasticity interfered at this concentration and lead to a delayed failure. In other words, higher elongation at break and a massive work of rupture was observed at 10%wt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe Mei2 gene encodes an RNA recognition motif (RRM) protein that stimulates meiosis upon binding a specific non-coding RNA and subsequent accumulation in a “mei2-dot” in the nucleus. We present here the first systematic characterization of the family of proteins with characteristic Mei2-like amino acid sequences. Mei2-like proteins are an ancient eukaryotic protein family with three identifiable RRMs. The C-terminal RRM (RRM3) is unique to Mei2-like proteins and is the most highly conserved of the three RRMs. RRM3 also contains conserved sequence elements at its C-terminus not found in other RRM domains. Single copy Mei2-like genes are present in some fungi, in alveolates such as Paramecium and in the early branching eukaryote Entamoeba histolytica, while plants contain small families of Mei2-like genes. While the C-terminal RRM is highly conserved between plants and fungi, indicating conservation of molecular mechanisms, plant Mei2-like genes have changed biological context to regulate various aspects of developmental pattern formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction. We develop a sheep thoracic spine interbody fusion model to study the suitability of polycaprolactone-based scaffold and recombinant human bone morphogenetic protein-2 (rhBMP-2) as a bone graft substitute within the thoracic spine. The surgical approach is a mini- open thoracotomy with relevance to minimally invasive deformity correction surgery for adolescent idiopathic scoliosis. To date there are no studies examining the use of this biodegradable implant in combination with biologics in a sheep thoracic spine model. Methods. In the present study, six sheep underwent a 3-level (T6/7, T8/9 and T10/11) discectomy with randomly allocated implantation of a different graft substitute at each of the three levels; (i) calcium phosphate (CaP) coated polycaprolactone based scaffold plus 0.54µg rhBMP-2, (ii) CaP coated PCL- based scaffold alone or (iii) autograft (mulched rib head). Fusion was assessed at six months post-surgery. Results. Computed Tomographic scanning demonstrated higher fusion grades in the rhBMP-2 plus PCL- based scaffold group in comparison to either PCL-based scaffold alone or autograft. These results were supported by histological evaluations of the respective groups. Biomechanical testing revealed significantly higher stiffness for the rhBMP-2 plus PCL- based scaffold group in all loading directions in comparison to the other two groups. Conclusions. The results of this study demonstrate that rhBMP-2 plus PCL-based scaffold is a viable bone graft substitute, providing an optimal environment for thoracic interbody spinal fusion in a large animal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular-level computer simulations of restricted water diffusion can be used to develop models for relating diffusion tensor imaging measurements of anisotropic tissue to microstructural tissue characteristics. The diffusion tensors resulting from these simulations can then be analyzed in terms of their relationship to the structural anisotropy of the model used. As the translational motion of water molecules is essentially random, their dynamics can be effectively simulated using computers. In addition to modeling water dynamics and water-tissue interactions, the simulation software of the present study was developed to automatically generate collagen fiber networks from user-defined parameters. This flexibility provides the opportunity for further investigations of the relationship between the diffusion tensor of water and morphologically different models representing different anisotropic tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (~ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ~ 300 % in 1h and ~ 40 % degradation during 30 d study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeting females at high school or earlier may be a key towards engaging them in science, technology, engineering and mathematics (STEM) education. This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. There was a series of lead-up lessons and four lessons for the catapult challenge (total of 18 x 45-minute lessons) over a nine-week period. Data from two girls within a focus group showed that they needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. There are implications for teachers facilitating STEM education, such as: clarifying STEM terms, articulating how students can interact in non-judgmental ways, and providing multiple opportunities for interacting within engineering education.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed a novel technique involving knitting and electrospinning to fabricate a composite scaffold for ligament tissue engineering. Knitted structures were coated with poly(L-lactic-co-e-caprolactone) (PLCL) and then placed onto a rotating cylinder and a PLCL solution was electrospun onto the structure. Highly aligned 2-μm-diameter microfibers covered the space between the stitches and adhered to the knitted scaffolds. The stress–strain tensile curves exhibited an initial toe region similar to the tensile behavior of ligaments. Composite scaffolds had an elastic modulus (150 ± 14 MPa) similar to the modulus of human ligaments. Biological evaluation showed that cells proliferated on the composite scaffolds and they spontaneously orientated along the direction of microfiber alignment. The microfiber architecture also induced a high level of extracellular matrix secretion, which was characterized by immunostaining. We found that cells produced collagen type I and type III, two main components found in ligaments. After 14 days of culture, collagen type III started to form a fibrous network. We fabricated a composite scaffold having the mechanical properties of the knitted structure and the morphological properties of the aligned microfibers. It is difficult to seed a highly macroporous structure with cells, however the technique we developed enabled an easy cell seeding due to presence of the microfiber layer. Therefore, these scaffolds presented attractive properties for a future use in bioreactors for ligament tissue engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioreactors are defined as devices in which biological and/or biochemical processes develop under closely monitored and tightly controlled environmental and operating conditions (e.g. pH, temperature, mechanical conditions, nutrient supply and waste removal). In functional tissue engineering of musculoskeletal tissues, a bioreactor capable of controlling dynamic loading plays a determinant role. It has been shown that mechanical stretching promotes the expression of type I and III collagens, fibronectin, tenascin-C in cultured ligament fibroblasts (J.C.-H. Goh et al., Tissue Eng. 9 (2003), S31) and that human bone marrow mesenchymal stem cells (hBMMSC) – even in the absence of biochemical regulators – could be induced to differentiate into ligament-like fibroblast by the application of physiologically relevant cyclic strains (G. Vunjak-Novakovic et al., Ann. Rev. Biomed. Eng. 6 (2004), 131; H.A. Awad et al., Tissue Eng. 5 (1999), 267; R.G. Young et al., J. Orthop. Res. 16 (1998), 406). Different bioreactors are commercially available but they are too generic to be used for a given tissue, each tissue showing specific mechanical loading properties. In the case of ligament tissue engineering, the design of a bioreactor is still an open question. Our group proposes a bioreactor allowing cyclic traction–torsion on a scaffold seeded with stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression patterns of GUS fusion constructs driven by the Agrobacterium rhizogenes RolC and the maize Sh (Shrunken: sucrose synthase-1) promoters were examined in transgenic potatoes (cv. Atlantic). RolC drove high-level gene expression in phloem tissue, bundle sheath cells and vascular parenchyma, but not in xylem or non-vascular tissues. Sh expression was exclusively confined to phloem tissue. Potato leafroll luteovirus (PLRV) replicates only in phloem tissues, and we show that when RolC is used to drive expression of the PLRV coat protein gene, virus-resistant lines can be obtained. In contrast, no significant resistance was observed when the Sh promoter was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone, a hard biological material, possesses a combination of high stiffness and toughness, even though the main basic building blocks of bone are simply mineral platelets and protein molecules. Bone has a very complex microstructure with at least seven hierachical levels. This unique material characteristic attracts great attention, but the deformation mechanisms in bone have not been well understood. Simulation at nano-length scale such as molecular dynamics (MD) is proven to be a powerful tool to investigate bone nanomechanics for developing new artificial biological materials. This study focuses on the ultra large and thin layer of extrafibrillar protein matrix (thickness = ~ 1 nm) located between mineralized collagen fibrils (MCF). Non-collagenous proteins such as osteopontin (OPN) can be found in this protein matrix, while MCF consists mainly of hydroxyapatite (HA) nanoplatelets (thickness = 1.5 – 4.5 nm). By using molecular dynamics method, an OPN peptide was pulled between two HA mineral platelets with water in presence. Periodic boundary condition (PBC) was applied. The results indicate that the mechanical response of OPN peptide greatly depends on the attractive electrostatics interaction between the acidic residues in OPN peptide and HA mineral surfaces. These bonds restrict the movement of OPN peptide, leading to a high energy dissipation under shear loading.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the end of the first decade of the twenty-first century, there is unprecedented awareness of the need for a transformation in development, to meet the needs of the present while also preserving the ability of future generations to meet their own needs. However, within engineering, educators still tend to regard such development as an ‘aspect’ of engineering rather than an overarching meta-context, with ad hoc and highly variable references to topics. Furthermore, within a milieu of interpretations there can appear to be conflicting needs for achieving sustainable development, which can be confusing for students and educators alike. Different articulations of sustainable development can create dilemmas around conflicting needs for designers and researchers, at the level of specific designs and (sub-) disciplinary analysis. Hence sustainability issues need to be addressed at a meta-level using a whole of system approach, so that decisions regarding these dilemmas can be made. With this appreciation, and in light of curriculum renewal challenges that also exist in engineering education, this paper considers how educators might take the next step to move from sustainable development being an interesting ‘aspect’ of the curriculum, to sustainable development as a meta-context for curriculum renewal. It is concluded that capacity building for such strategic considerations is critical in engineering education.