142 resultados para Bayes Estimator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Precise identification of the time when a change in a hospital outcome has occurred enables clinical experts to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for survival time of a clinical procedure in the presence of patient mix in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step change in the mean survival time of patients who underwent cardiac surgery. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. Markov Chain Monte Carlo is used to obtain posterior distributions of the change point parameters including location and magnitude of changes and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time CUSUM control charts for different magnitude scenarios. The proposed estimator shows a better performance where a longer follow-up period, censoring time, is applied. In comparison with the alternative built-in CUSUM estimator, more accurate and precise estimates are obtained by the Bayesian estimator. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a framework of a model-based hot spot identification method by applying full Bayes (FB) technique. In comparison with the state-of-the-art approach [i.e., empirical Bayes method (EB)], the advantage of the FB method is the capability to seamlessly integrate prior information and all available data into posterior distributions on which various ranking criteria could be based. With intersection crash data collected in Singapore, an empirical analysis was conducted to evaluate the following six approaches for hot spot identification: (a) naive ranking using raw crash data, (b) standard EB ranking, (c) FB ranking using a Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model, (e) FB ranking using a hierarchical Poisson model, and (f) FB ranking using a hierarchical Poisson (AR-1) model. The results show that (a) when using the expected crash rate-related decision parameters, all model-based approaches perform significantly better in safety ranking than does the naive ranking method, and (b) the FB approach using hierarchical models significantly outperforms the standard EB approach in correctly identifying hazardous sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study proposes a full Bayes (FB) hierarchical modeling approach in traffic crash hotspot identification. The FB approach is able to account for all uncertainties associated with crash risk and various risk factors by estimating a posterior distribution of the site safety on which various ranking criteria could be based. Moreover, by use of hierarchical model specification, FB approach is able to flexibly take into account various heterogeneities of crash occurrence due to spatiotemporal effects on traffic safety. Using Singapore intersection crash data(1997-2006), an empirical evaluate was conducted to compare the proposed FB approach to the state-of-the-art approaches. Results show that the Bayesian hierarchical models with accommodation for site specific effect and serial correlation have better goodness-of-fit than non hierarchical models. Furthermore, all model-based approaches perform significantly better in safety ranking than the naive approach using raw crash count. The FB hierarchical models were found to significantly outperform the standard EB approach in correctly identifying hotspots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quick detection of abrupt (unknown) parameter changes in an observed hidden Markov model (HMM) is important in several applications. Motivated by the recent application of relative entropy concepts in the robust sequential change detection problem (and the related model selection problem), this paper proposes a sequential unknown change detection algorithm based on a relative entropy based HMM parameter estimator. Our proposed approach is able to overcome the lack of knowledge of post-change parameters, and is illustrated to have similar performance to the popular cumulative sum (CUSUM) algorithm (which requires knowledge of the post-change parameter values) when examined, on both simulated and real data, in a vision-based aircraft manoeuvre detection problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes system identification, estimation and control of translational motion and heading angle for a cost effective open-source quadcopter — the MikroKopter. The dynamics of its built-in sensors, roll and pitch attitude controller, and system latencies are determined and used to design a computationally inexpensive multi-rate velocity estimator that fuses data from the built-in inertial sensors and a low-rate onboard laser range finder. Control is performed using a nested loop structure that is also computationally inexpensive and incorporates different sensors. Experimental results for the estimator and closed-loop positioning are presented and compared with ground truth from a motion capture system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the fundamental econometric models in finance is predictive regression. The standard least squares method produces biased coefficient estimates when the regressor is persistent and its innovations are correlated with those of the dependent variable. This article proposes a general and convenient method based on the jackknife technique to tackle the estimation problem. The proposed method reduces the bias for both single- and multiple-regressor models and for both short- and long-horizon regressions. The effectiveness of the proposed method is demonstrated by simulations. An empirical application to equity premium prediction using the dividend yield and the short rate highlights the differences between the results by the standard approach and those by the bias-reduced estimator. The significant predictive variables under the ordinary least squares become insignificant after adjusting for the finite-sample bias. These discrepancies suggest that bias reduction in predictive regressions is important in practical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new approach for state estimation of angles and frequencies of equivalent areas in large power systems with synchronized phasor measurement units. Defining coherent generators and their correspondent areas, generators are aggregated and system reduction is performed in each area of inter-connected power systems. The structure of the reduced system is obtained based on the characteristics of the reduced linear model and measurement data to form the non-linear model of the reduced system. Then a Kalman estimator is designed for the reduced system to provide an equivalent dynamic system state estimation using the synchronized phasor measurement data. The method is simulated on two test systems to evaluate the feasibility of the proposed method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to forecast machinery health is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models which attempt to forecast machinery health based on condition data such as vibration measurements. This paper demonstrates how the population characteristics and condition monitoring data (both complete and suspended) of historical items can be integrated for training an intelligent agent to predict asset health multiple steps ahead. The model consists of a feed-forward neural network whose training targets are asset survival probabilities estimated using a variation of the Kaplan–Meier estimator and a degradation-based failure probability density function estimator. The trained network is capable of estimating the future survival probabilities when a series of asset condition readings are inputted. The output survival probabilities collectively form an estimated survival curve. Pump data from a pulp and paper mill were used for model validation and comparison. The results indicate that the proposed model can predict more accurately as well as further ahead than similar models which neglect population characteristics and suspended data. This work presents a compelling concept for longer-range fault prognosis utilising available information more fully and accurately.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces a high-speed, 100Hz, visionbased state estimator that is suitable for quadrotor control in close quarters manoeuvring applications. We describe the hardware and algorithms for estimating the state of the quadrotor. Experimental results for position, velocity and yaw angle estimators are presented and compared with motion capture data. Quantitative performance comparison with state-of-the-art achievements are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite a considerable amount of research on traffic injury severities, relatively little is known about the factors influencing traffic injury severity in developing countries, and in particular in Bangladesh. Road traffic crashes are a common headline in daily newspapers of Bangladesh. It has also recorded one of the highest road fatality rates in the world. This research identifies significant factors contributing to traffic injury severity in Dhaka – a mega city and capital of Bangladesh. Road traffic crash data of 5 years from 2007 to 2011 were collected from the Dhaka Metropolitan Police (DMP), which included about 2714 traffic crashes. The severity level of these crashes was documented in a 4-point ordinal scale: no injury (property damage), minor injury, severe injury, and death. An ordered Probit regression model has been estimated to identify factors contributing to injury severities. Results show that night time influence is associated with a higher level injury severity as is for individuals involved in single vehicle crashes. Crashes on highway sections within the city are found to be more injurious than crashes along the arterial and feeder roads. There is a lower likelihood of injury severity, however, if the road sections are monitored and enforced by the traffic police. The likelihood of injuries is lower on two-way traffic arrangements than one-way, and at four-legged intersections and roundabouts compare to road segments. The findings are compared with those from developed countries and the implications of this research are discussed in terms of policy settings for developing countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suggests an alternative and computationally simpler approach of non-random sampling of labour economics and represents an observed outcome of an individual female′s choice of whether or not to participate in the labour market. Concludes that there is an alternative to the Heckman two-step estimator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immigration has played an important role in the historical development of Australia. Thus, it is no surprise that a large body of empirical work has developed, which focuses upon how migrants fare in the land of opportunity. Much of the literature is comparatively recent, i.e. the last ten years or so, encouraged by the advent of public availability of Australian crosssection micro data. Several different aspects of migrant welfare have been addressed, with major emphasis being placed upon earnings and unemployment experience. For recent examples see Haig (1980), Stromback (1984), Chiswick and Miller (1985), Tran-Nam and Nevile (1988) and Beggs and Chapman (1988). The present paper contributes to the literature by providing additional empirical evidence on the native/migrant earnings differential. The data utilised are from the rather neglected Australian Bureau of Statistics, ABS Special Supplementary Survey No.4. 1982, otherwise known as the Family Survey. The paper also examines the importance of distinguishing between the wage and salary sector and the self-employment sector when discussing native/migrant differentials. Separate earnings equations for the two labour market groups are estimated and the native/migrant earnings differential is broken down by employment status. This is a novel application in the Australian context and provides some insight into the earnings of the selfemployed, a group that despite its size (around 20 per cent of the labour force) is frequently ignored by economic research. Most previous empirical research fails to examine the effect of employment status on earnings. Stromback (1984) includes a dummy variable representing self-employment status in an earnings equation estimated over a pooled sample of paid and self-employed workers. The variable is found to be highly significant, which leads Stromback to question the efficacy of including the self-employed in the estimation sample. The suggestion is that part of self-employed earnings represent a return to non-human capital investment, i.e. investments in machinery, buildings etc, the structural determinants of earnings differ significantly from those for paid employees. Tran-Nam and Nevile (1988) deal with differences between paid employees and the selfemployed by deleting the latter from their sample. However, deleting the self-employed from the estimation sample may lead to bias in the OLS estimation method (see Heckman 1979). The desirable properties of OLS are dependent upon estimation on a random sample. Thus, the 'Ran-Nam and Nevile results are likely to suffer from bias unless individuals are randomly allocated between self-employment and paid employment. The current analysis extends Tran-Nam and Nevile (1988) by explicitly treating the choice of paid employment versus self-employment as being endogenously determined. This allows an explicit test for the appropriateness of deleting self-employed workers from the sample. Earnings equations that are corrected for sample selection are estimated for both natives and migrants in the paid employee sector. The Heckman (1979) two-step estimator is employed. The paper is divided into five major sections. The next section presents the econometric model incorporating the specification of the earnings generating process together with an explicit model determining an individual's employment status. In Section 111 the data are described. Section IV draws together the main econometric results of the paper. First, the probit estimates of the labour market status equation are documented. This is followed by presentation and discussion of the Heckman two-stage estimates of the earnings specification for both native and migrant Australians. Separate earnings equations are estimated for paid employees and the self-employed. Section V documents estimates of the nativelmigrant earnings differential for both categories of employees. To aid comparison with earlier work, the Oaxaca decomposition of the earnings differential for paid-employees is carried out for both the simple OLS regression results as well as the parameter estimates corrected for sample selection effects. These differentials are interpreted and compared with previous Australian findings. A short section concludes the paper.