73 resultados para Batteries (Ordnance)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We fabricated high performance supercapacitors by using all carbon electrodes, with volume energy in the order of 10−3 Whcm−3, comparable to Li-ion batteries, and power densities in the range of 10 Wcm−3, better than laser-scribed-graphene supercapacitors. All-carbon supercapacitor electrodes are made by solution processing and filtering electrochemically-exfoliated graphene sheets mixed with clusters of spontaneously entangled multiwall carbon nanotubes. We maximize the capacitance by using a 1:1 weight ratio of graphene to multi-wall carbon nanotubes and by controlling their packing in the electrode film so as to maximize accessible surface and further enhance the charge collection. This electrode is transferred onto a plastic-paper-supported double-wall carbon nanotube film used as current collector. These all-carbon thin films are combined with plastic paper and gelled electrolyte to produce solid-state bendable thin film supercapacitors. We assembled supercapacitor cells in series in a planar configuration to increase the operating voltage and find that the shape of our supercapacitor film strongly affects its capacitance. An in-line superposition of rectangular sheets is superior to a cross superposition in maintaining high capacitance when subject to fast charge/discharge cycles. The effect is explained by addressing the mechanism of ion diffusion into stacked graphene sheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant increase in installation of rooftop Photovoltaic (PV) in the Low-Voltage (LV) residential distribution network has resulted in over voltage problems. Moreover, increasing peak demand creates voltage dip problems and make voltage profile even worse. Utilizing the reactive power capability of PV inverter (RCPVI) can improve the voltage profile to some extent. Resistive caharcteristic (higher R/X ratio) limits the effectiveness of reactive power to provide voltage support in distribution network. Battery Energy Storage (BES), whereas, can store the excess PV generation during high solar insolation time and supply the stored energy back to the grid during peak demand. A coordinated algorithm is developed in this paper to use the reactive capability of PV inverter and BES with droop control. Proposed algorithm is capable to cater the severe voltage violation problem using RCPVI and BES. A signal flow is also mentioned in this research work to ensure smooth communication between all the equipments. Finally the developed algorithm is validated in a test distribution network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an efficient algorithm for optimizing the operation of battery storage in a low voltage distribution network with a high penetration of PV generation. A predictive control solution is presented that uses wavelet neural networks to predict the load and PV generation at hourly intervals for twelve hours into the future. The load and generation forecast, and the previous twelve hours of load and generation history, is used to assemble load profile. A diurnal charging profile can be compactly represented by a vector of Fourier coefficients allowing a direct search optimization algorithm to be applied. The optimal profile is updated hourly allowing the state of charge profile to respond to changing forecasts in load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

100 year old gasoline engine technology vehicles have now become one of the major contributors of greenhouse gases. Plug-in Electric Vehicles (PEVs) have been proposed to achieve environmental friendly transportation. Even though the PEV usage is currently increasing, a technology breakthrough would be required to overcome battery related drawbacks. Although battery technology is evolving, drawbacks inherited with batteries such as; cost, size, weight, slower charging characteristic and low energy density would still be dominating constrains for development of EVs. Furthermore, PEVs have not been accepted as preferred choice by many consumers due to charging related issues. To address battery related limitations, the concept of dynamic Wireless Power Transfer (WPT) enabled EVs have been proposed in which EV is being charged while it is in motion. WPT enabled infrastructure has to be employed to achieve dynamic EV charging concept. The weight of the battery pack can be reduced as the required energy storage is lower if the vehicle can be powered wirelessly while driving. Stationary WPT charging where EV is charged wirelessly when it is stopped, is simpler than dynamic WPT in terms of design complexity. However, stationary WPT does not increase vehicle range compared to wired-PEVs. State-of-art WPT technology for future transportation is discussed in this chapter. Analysis of the WPT system and its performance indices are introduced. Modelling the WPT system using different methods such as equivalent circuit theory, two port network theory and coupled mode theory is described illustrating their own merits in Sect. 2.3. Both stationary and dynamic WPT for EV applications are illustrated in Sect. 2.4. Design challenges and optimization directions are analysed in Sect. 2.5. Adaptive tuning techniques such as adaptive impedance matching and frequency tuning are also discussed. A case study for optimizing resonator design is presented in Sect. 2.6. Achievements by the research community is introduced highlighting directions for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the Department of Defense's most pressing environmental problems is the efficient detection and identification of unexploded ordnance (UXO). In regions of highly magnetic soils, magnetic and electromagnetic sensors often detect anomalies that are of geologic origin, adding significantly to remediation costs. In order to develop predictive models for magnetic susceptibility, it is crucial to understand modes of formation and the spatial distribution of different iron oxides. Most rock types contain iron and their magnetic susceptibility is determined by the amount and form of iron oxides present. When rocks weather, the amount and form of the oxides change, producing concomitant changes in magnetic susceptibility. The type of iron oxide found in the weathered rock or regolith is a function of the duration and intensity of weathering, as well as the original content of iron in the parent material. The rate of weathering is controlled by rainfall and temperature; thus knowing the climate zone, the amount of iron in the lithology and the age of the surface will help predict the amount and forms of iron oxide. We have compiled analyses of the types, amounts, and magnetic properties of iron oxides from soils over a wide climate range, from semi arid grasslands, to temperate regions, and tropical forests. We find there is a predictable range of iron oxide type and magnetic susceptibility according to the climate zone, the age of the soil and the amount of iron in the unweathered regolith.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic properties of soils have been highlighted as a primary detrimental environmental effect on the performance of geophysical systems for detection of unexploded ordnance (UXO) and mine targets. A recent workshop at Cranfield University, U.K., aimed to identify knowledge gaps related to soil magnetism. Eight invited speakers from multidisciplinary areas provided briefings on state‐of‐the‐art research linked to soil magnetism and geophysical sensing. Contributions from other participants provided additional insights from a range of disciplines through case studies and applications. The workshop included break‐out sessions to identify current gaps in knowledge and to determine priority areas for investment in research to further developments in UXO and mine detection in magnetic soil environments. Key recommendations for future research investments have been grouped in categories including soils, theory and modeling, instrumentation, and communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient yet inexpensive electrocatalysts for oxygen reduction reaction (ORR) are an essential component of renewable energy devices, such as fuel cells and metal-air batteries. We herein interleaved novel Co3O4 nanosheets with graphene to develop a first ever sheet-on-sheet heterostructured electrocatalyst for ORR, whose electrocatalytic activity outperformed the state-of-the-art commercial Pt/C with exceptional durability in alkaline solution. The composite demonstrates the highest activity of all the nonprecious metal electrocatalysts, such as those derived from Co3O4 nanoparticle/nitrogen-doped graphene hybrids and carbon nanotube/nanoparticle composites. Density functional theory (DFT) calculations indicated that the outstanding performance originated from the significant charge transfer from graphene to Co3O4 nanosheets promoting the electron transport through the whole structure. Theoretical calculations revealed that the enhanced stability can be ascribed to the strong interaction generated between both types of sheets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a largeradius conical indenter is also proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has recently been a rapidly increasing interest in solar powered UAVs. With the emergence of high power density batteries, long range and low-power micro radio devices, airframes, and powerful micro-processors and motors, small/micro UAVs have become applicable in civilian applications such as remote sensing, mapping, traffic monitoring, search and rescue. The Green Falcon UAV is an innovative project from Queensland University of Technology and has been developed and tested during these past years. It comprises a wide range of subsystems to be analyses and studied such as Solar Panel Cells, Gas sensor, Aerodynamics of the wing and others. Previous test however, resulted in damage to the solar cells and some of the subsystems including motor and ESC. This report describes the repair and verification process followed to improve the efficiency of the Green Falcon UAV. The report shows some of the results obtained in previous static and flight tests as well as some of recommendations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium-ion batteries (SIBs) are considered as complementary alternatives to lithium-ion batteries for grid energy storage due to the abundance of sodium. However, low capacity, poor rate capability, and cycling stability of existing anodes significantly hinder the practical applications of SIBs. Herein, ultrathin two-dimensional SnS2 nanosheets (3-4 nm in thickness) are synthesized via a facile refluxing process toward enhanced sodium storage. The SnS2 nanosheets exhibit a high apparent diffusion coefficient of Na+ and fast sodiation/desodiation reaction kinetics. In half-cells, the nanosheets deliver a high reversible capacity of 733 mAh g-1 at 0.1 A g-1, which still remains up to 435 mAh g-1 at 2 A g-1. The cell has a high capacity retention of 647 mA h g-1 during the 50th cycle at 0.1 A g-1, which is by far the best for SnS2, suggesting that nanosheet morphology is beneficial to improve cycling stability in addition to rate capability. The SnS2 nanosheets also show encouraging performance in a full cell with a Na3V2(PO4)3 cathode. In addition, the sodium storage mechanism is investigated by ex situ XRD coupled with high-resolution TEM. The high specific capacity, good rate capability, and cycling durability suggest that SnS2 nanosheets have great potential working as anodes for high-performance SIBs. © 2015 American Chemical Society.