240 resultados para Assembly line
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
Number lines are part of our everyday life (e.g., thermometers, kitchen scales) and are frequently used in primary mathematics as instructional aids, in texts and for assessment purposes on mathematics tests. There are two major types of number lines; structured number lines, which are the focus of this paper, and empty number lines. Structured number lines represent mathematical information by the placement of marks on a horizontal or vertical line which has been marked into proportional segments (Figure 1). Empty number lines are blank lines which students can use for calculations (Figure 2) and are not discussed further here (see van den Heuvel-Panhuizen, 2008, on the role of empty number lines). In this article, we will focus on how students’ knowledge of the structured number line develops and how they become successful users of this mathematical tool.
Resumo:
This paper reports on the empirical comparison of seven machine learning algorithms in texture classification with application to vegetation management in power line corridors. Aiming at classifying tree species in power line corridors, object-based method is employed. Individual tree crowns are segmented as the basic classification units and three classic texture features are extracted as the input to the classification algorithms. Several widely used performance metrics are used to evaluate the classification algorithms. The experimental results demonstrate that the classification performance depends on the performance matrix, the characteristics of datasets and the feature used.
Resumo:
This paper presents a comprehensive discussion of vegetation management approaches in power line corridors based on aerial remote sensing techniques. We address three issues 1) strategies for risk management in power line corridors, 2) selection of suitable platforms and sensor suite for data collection and 3) the progress in automated data processing techniques for vegetation management. We present initial results from a series of experiments and, challenges and lessons learnt from our project.
Resumo:
The use of parliamentary questions is the most popular and visible tool in the hands of the Opposition as a means to make government accountable. Their main purpose is to seek information or press for action. Contemporary parliamentary literature from the UK, Canada, and Australia, however, suggests that parliamentary questions have lost their effectiveness. The literature points out that Question Time in parliaments has become a battle ground between Ruling and Opposition parties in their fight to gain maximum political advantage. In this context, the effectiveness of parliamentary questions in the Indian state legislatures has not been investigated. The aim of this study, therefore, is to analyse the use, purpose and effectiveness of parliamentary questions in the State Legislative Assembly of Uttar Pradesh (India) to explore differences, if any, between Ruling and Opposition parties. In this study, 4023 parliamentary questions asked in the Uttar Pradesh State Legislative Assembly were analysed. The effectiveness of answers was also analysed qualitatively. The results show that half of the total members of the Assembly used this device, out of which 60% of the questions were asked by the Opposition party members. 31% of the questions from the Opposition were seeking information and 69% were pressing for action. The government provided the required information in 96% of the questions in the former category and took action in only 35% of the latter category. Furthermore, 60% of the questions raised by the Opposition were related to constituency matters and the remaining 40% were related to policy issues or public welfare. Comparing the data with the ruling party, the results indicate that the use,purpose and effectiveness of parliamentary questions were similar to that of the Opposition except some minor differences. Surprisingly, there was no evidence of any ‘Dorothy Dix’ questions. The study concludes parliamentary question is an effective device in the Indian state of Uttar Pradesh.
Resumo:
Resistance to rice virus diseases is an important requirement in many Southeast Asian rice breeding programs. Inheritance of resistance to rice tungro spherical virus (RTSV) in TW5, a near-isogenic line derived from Indonesian rice cultivar Utri Merah, was compared to that in TKM6, an Indian rice cultivar. Both TKM6 and Utri Merah are cultivars resistant to RTSV infections. Crosses were made between TKM6 and TN1, a susceptible cultivar, and between TW5 and TN1, and F3 lines were evaluated for their resistance to RTSV using two RTSV inoculum sources and a serological assay (ELISA). In TKM6, the resistance to the mixture of RTSV-V + RTBV inoculum source was controlled by a single recessive gene, whereas in TW5, the resistance was controlled by two recessive genes. A single recessive gene, however, controlled the resistance in TW5 when another RTSV variant, RTSV-VI, was used, suggesting that the resistance in TW5 depends on the nature of the RTSV inoculum used. RT-PCR, sequence, and phylogenetic analyses confirmed that RTSV-VI inoculum differs from RTSV-V inoculum and accurate phenotyping of the resistance to RTSV requires the use of a genetic marker.
Resumo:
The use of appropriate features to represent an output class or object is critical for all classification problems. In this paper, we propose a biologically inspired object descriptor to represent the spectral-texture patterns of image-objects. The proposed feature descriptor is generated from the pulse spectral frequencies (PSF) of a pulse coupled neural network (PCNN), which is invariant to rotation, translation and small scale changes. The proposed method is first evaluated in a rotation and scale invariant texture classification using USC-SIPI texture database. It is further evaluated in an application of vegetation species classification in power line corridor monitoring using airborne multi-spectral aerial imagery. The results from the two experiments demonstrate that the PSF feature is effective to represent spectral-texture patterns of objects and it shows better results than classic color histogram and texture features.
Resumo:
The study investigated the effect on learning of four different instructional formats used to teach assembly procedures. Cognitive load and spatial information processing theories were used to generate the instructional material. The first group received a physical model to study, the second an isometric drawing, the third an isometric drawing plus a model and the fourth an orthographic drawing. Forty secondary school students were presented with the four different instructional formats and subsequently tested on an assembly task. The findings indicated that there may be evidence to argue that the model format which only required encoding of an already constructed three dimensional representation, caused less extraneous cognitive load compared to the isometric and the orthographic formats. No significant difference was found between the model and the isometric-plus-model formats on all measures because 80% of the students in the isometric-plus-model format chose to use the model format only. The model format also did not differ significantly from other groups in total time taken to complete the assembly, in number of correctly assembled pieces and in time spent on studying the tasks. However, the model group had significantly more correctly completed models and required fewer extra looks than the other groups.
A simplified invariant line analysis for face-centred cubic/body-centred cubic precipitation systems
Resumo:
The size of rat-race and branch-line couplers can be reduced by using periodic loading or artificial transmission lines. The objective of this work is to extend the idea of size reduction through periodic loading to coupled-line 90° hybrids. A procedure for the extraction of the characteristic parameters of a coupled-line 4-port from a single set of S-parameters is described. This method can be employed to design of coupled artificial transmission line couplers of arbitrary geometry. The procedure is illustrated through the design a broadside-coupled stripline hybrid, periodically loaded with stubs. Measured results for a prototype coupler confirm the validity of the theory.
Resumo:
Lean product design has the potential to reduce the overall product development time and cost and can improve the quality of a product. However, it has been found that no or little work has been carried out to provide an integrated framework of "lean design" and to quantitatively evaluate the effectiveness of lean practices/principles in product development process. This research proposed an integrated framework for lean design process and developed a dynamic decision making tool based on Methods Time Measurement (MTM) approach for assessing the impact of lean design on the assembly process. The proposed integrated lean framework demonstrates the lean processes to be followed in the product design and assembly process in order to achieve overall leanness. The decision tool consists of a central database, the lean design guidelines, and MTM analysis. Microsoft Access and C# are utilized to develop the user interface to use the MTM analysis as decision making tool. MTM based dynamic tool is capable of estimating the assembly time, costs of parts and labour of various alternatives of a design and hence is able to achieve optimum design. A case study is conducted to test and validate the functionality of the MTM Analysis as well as to verify the lean guidelines proposed for product development.
Resumo:
Stimulated by the efficacy of copper (I) catalysed Huisgen-type 1,3-dipolar cycloaddition of terminal alkynes and organic azides to generate 1,4-disubstituted 1,2,3-triazole derivatives, the importance of ‘click’ chemistry in the synthesis of organic and biological molecular systems is ever increasing.[1] The mild reaction conditions have also led to this reaction gaining favour in the construction of interlocked molecular architectures.[2-4] In the majority of cases however, the triazole group simply serves as a covalent linkage with no function in the resulting organic molecular framework. More recently a renewed interest has been shown in the transition metal coordination chemistry of triazole ligands.[3, 5, 6] In addition novel aryl macrocyclic and acyclic triazole based oligomers have been shown to recognise halide anions via cooperative triazole C5-H….anion hydrogen bonds.[7] In light of this it is surprising the potential anion binding affinity of the positively charged triazolium motif has not, with one notable exception,[8] been investigated. With the objective of manipulating the unique topological cavities of mechanically bonded molecules for anion recognition purposes, we have developed general methods of using anions to template the formation of interpenetrated and interlocked structures.[9-13] Herein we report the first examples of exploiting the 1,2,3-triazolium group in the anion templated formation of pseudorotaxane and rotaxane assemblies. In an unprecedented discovery the bromide anion is shown to be a superior templating reagent to chloride in the synthesis of a novel triazolium axle containing [2]rotaxane. Furthermore the resulting rotaxane interlocked host system exhibits the rare selectivity preference for bromide over chloride...