108 resultados para Ash layer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of carbon dioxide and nitrogen molecules on aluminum nitride (AlN) nanostructures has been explored using first-principle computational methods. Optimized configurations corresponding to physisorption and, subsequentially, chemisorption of CO2 are identified, in contrast to N2, for which only a physisorption structure is found. Transition-state searches imply a low energy barrier between the physisorption and chemisorption states for CO2 such that the latter is accessible and thermodynamically favored at room temperature. The effective binding energy of the optimized chemisorption structure is apparently larger than those for other CO2 adsorptive materials, suggesting the potential for application of aluminum nitride nanostructures for carbon dioxide capture and storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an experimental investigation of the flexural and shear bond characteristics of thin layer polymer cement mortared concrete masonry. It is well known that the bond characteristics of masonry depend upon the mortar type, the techniques of dispersion of mortar and the surface texture of concrete blocks; there exists an abundance of literature on the conventional 10 mm thick cement mortared masonry bond; however, 1-4 mm thick polymer cement mortared masonry bond is not yet well researched. This paper reports a study on the examination of the effect of mortar compositions, dispersion methods and unit surface textures to the flexural and shear bond characteristics of thin layer mortared concrete masonry. A non-contact digital image correlation method was adopted for the measurement of strains at the unit-mortar interface in this research. All mortar joints have been carefully prepared to ensure achievement of the desired thin layer mortar thickness on average. The results exhibit that the bond strength of thin mortar layered concrete masonry with polymer cement mortar is higher than that of the conventional masonry; moreover the unit surface texture and the mortar dispersion methods are found to have significant influence on the flexural and shear bond characteristics. From the experimental results, a correlation between the flexural and the shear bond strengths has been determined and is presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless networked control systems (WNCSs) have been increasingly deployed in industrial applications. As they require timely data packet transmissions, it is difficult to make efficient use of the limited channel resources, particularly in contention based wireless networks in the layered network architecture. Aiming to maintain the WNCSs under critical real-time traffic condition at which the WNCSs marginally meet the real-time requirements, a cross-layer design (CLD) approach is presented in this paper to adaptively adjust the control period to achieve improved channel utilization while still maintaining effective and timely packet transmissions. The effectiveness of the proposed approach is demonstrated through simulation studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been significant interest in developing metal oxide films with high surface area-to-volume ratio nanostructures particularly in substantially increasing the performance of Pt/oxide/semiconductor Schottky-diode gas sensors. While retaining the surface morphology of these devices, they can be further improved by modifying their nanostructured surface with a thin metal oxide layer. In this work, we analyse and compare the electrical and hydrogen-sensing properties of MoO3 nanoplatelets coated with a 4 nm layer of tantalum oxide (Ta2O5) or lanthanum oxide (La2O3). We explain in our study, that the presence of numerous defect traps at the surface (and the bulk) of the thin high-� layer causes a substantial trapping of charge during hydrogen adsorption. As a result, the interface between the Pt electrode and the thin oxide layer becomes highly polarised. Measurement results also show that the nanoplatelets coated with Ta2O5 can enable the device to be more sensitive (a larger voltage shift under hydrogen exposure) than those coated with La2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the comparative study of magnetotransport properties of large-area vertical few-layer graphene networks with different morphologies, measured in a strong (up to 10 T) magnetic field over a wide temperature range. The petal-like and tree-like graphene networks grown by a plasma enhanced CVD process on a thin (500 nm) silicon oxide layer supported by a silicon wafer demonstrate a significant difference in the resistance-magnetic field dependencies at temperatures ranging from 2 to 200 K. This behaviour is explained in terms of the effect of electron scattering at ultra-long reactive edges and ultra-dense boundaries of the graphene nanowalls. Our results pave a way towards three-dimensional vertical graphene-based magnetoelectronic nanodevices with morphology-tuneable anisotropic magnetic properties. © The Royal Society of Chemistry 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graphene grown on metal catalysts with low carbon solubility is a highly competitive alternative to exfoliated and other forms of graphene, yet a single-layer, single-crystal structure remains a challenge because of the large number of randomly oriented nuclei that form grain boundaries when stitched together. A kinetic model of graphene nucleation and growth is developed to elucidate the effective controls of the graphene island density and surface coverage from the onset of nucleation to the full monolayer formation in low-pressure, low-temperature CVD. The model unprecedentedly involves the complete cycle of the elementary gas-phase and surface processes and shows a precise quantitative agreement with the recent low-energy electron diffraction measurements and also explains numerous parameter trends from a host of experimental reports. These agreements are demonstrated for a broad pressure range as well as different combinations of precursor gases and supporting catalysts. The critical role of hydrogen in controlling the graphene nucleation and monolayer formation is revealed and quantified. The model is generic and can be extended to even broader ranges of catalysts and precursor gases/pressures to enable the as yet elusive effective control of the crystalline structure and number of layers of graphene using the minimum amounts of matter and energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a SiO2 nanolayer and annealing temperature on the UV/visible room-temperature photoluminescence (PL) from SiNx films synthesized by rf magnetron sputtering is studied. The PL intensity can be maximized when the SiO2 layer is 510 nm thick at 800 °C annealing temperature and only 2 nm at 1000 °C. A compositionstructureproperty analysis reveals that the PL intensity is directly related to both the surface chemical states and the content of the SiO and SiN bonds in the SiNx films. These results are relevant for the development of advanced optoelectronic and photonic emitters and sensors. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research was a step forward to developing data sets for thin layer mortared concrete masonry through systematic experimental and numerical studies. Since thin layer mortared concrete masonry is relatively new type of masonry construction, methodical research studies have been undertaken to properly address the gaps in understanding of this masonry system. As part of the ARC Linkage research project, this thesis has been developed to extend the knowledge on thin layer mortared concrete masonry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effect of near-wall transition regions on the surface wave propagation in a magnetoactive plasma layer bounded by a metal. It is shown that the account for inhomogeneities of plasma density or magnetic field causes an appearance of coupling between surface waves, propagating across magnetic field and localized near difference boundaries of the structure. The resonance damping of surface waves is analyzed too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on providing reliable data transmissions in large-scale industrial wireless sensor networks through improving network layer protocols. It addresses three major problems: scalability, dynamic industrial environments and coexistence of multiple types of data traffic in a network. Theoretical developments are conducted, followed by simulation studies for verification of theoretic results. The approach proposed in this thesis has been shown to be effective for large-scale network implementation and to provide improved data transmission reliability for both periodic and sporadic traffic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A nonlinear interface element modelling method is formulated for the prediction of deformation and failure of high adhesive thin layer polymer mortared masonry exhibiting failure of units and mortar. Plastic flow vectors are explicitly integrated within the implicit finite element framework instead of relying on predictor–corrector like approaches. The method is calibrated using experimental data from uniaxial compression, shear triplet and flexural beam tests. The model is validated using a thin layer mortared masonry shear wall, whose experimental datasets are reported in the literature and is used to examine the behaviour of thin layer mortared masonry under biaxial loading.