92 resultados para Artificial wetland abatement
Resumo:
Purpose of review: Artificial corneas are being developed to meet a shortage of donor corneas as well as to address cases where allografting is contraindicated. A range of artificial corneas has been developed. Here we review several newer designs and especially those inspired by naturally occurring biomaterials found with the human body and elsewhere. Recent findings: Recent trends in the development of artificial corneas indicate a move towards the use of materials derived from native sources including decellularized corneal tissue and tissue substitutes synthesized by corneal cells in vitro when grown either on their own, or in conjunction with novel protein-based scaffolds. Biologically inspired materials are also being considered for implantation on their own with the view to promoting endogenous corneal tissue. Summary: More recent attempts at making artificial corneas have taken a more nature-based or nature-inspired approach. Several will in the near future be likely to be available clinically.
Resumo:
An Artificial Neural Network (ANN) is a computational modeling tool which has found extensive acceptance in many disciplines for modeling complex real world problems. An ANN can model problems through learning by example, rather than by fully understanding the detailed characteristics and physics of the system. In the present study, the accuracy and predictive power of an ANN was evaluated in predicting kinetic viscosity of biodiesels over a wide range of temperatures typically encountered in diesel engine operation. In this model, temperature and chemical composition of biodiesel were used as input variables. In order to obtain the necessary data for model development, the chemical composition and temperature dependent fuel properties of ten different types of biodiesels were measured experimentally using laboratory standard testing equipments following internationally recognized testing procedures. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture was optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the absolute fraction of variance (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found that ANN is highly accurate in predicting the viscosity of biodiesel and demonstrates the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties at different temperature levels. Therefore the model developed in this study can be a useful tool in accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
The application of artificial neural networks (ANN) in finance is relatively new area of research. We employed ANNs that used both fundamental and technical inputs to predict future prices of widely held Australian stocks and used these predicted prices for stock portfolio selection over a 10-year period (2001-2011). We found that the ANNs generally do well in predicting the direction of stock price movements. The stock portfolios selected by the ANNs with median accuracy are able to generate positive alpha over the 10-year period. More importantly, we found that a portfolio based on randomly selected network configuration had zero chance of resulting in a significantly negative alpha but a 27% chance of yielding a significantly positive alpha. This is in stark contrast to the findings of the research on mutual fund performance where active fund managers with negative alphas outnumber those with positive alphas.
Resumo:
Tissue Engineering is a promising emerging field that studies the intrinsic regenerative potential of the human body and uses it to restore functionality of damaged organs or tissues unable of self-healing due to illness or ageing. In order to achieve regeneration using Tissue Engineering strategies, it is first necessary to study the properties of the native tissue and determine the cause of tissue failure; second, to identify an optimum population of cells capable of restoring its functionality; and third, to design and manufacture a cellular microenvironment in which those specific cells are directed towards the desired cellular functions. The design of the artificial cellular niche has a tremendous importance, because cells will feel and respond to both its biochemical and biophysical properties very differently. In particular, the artificial niche will act as a physical scaffold for the cells, allowing their three-dimensional spatial organization; also, it will provide mechanical stability to the artificial construct; and finally, it will supply biochemical and mechanical cues to control cellular growth, migration, differentiation and synthesis of natural extracellular matrix. During the last decades, many scientists have made great contributions to the field of Tissue Engineering. Even though this research has frequently been accompanied by vast investments during extended periods of time, yet too often these efforts have not been enough to translate the advances into new clinical therapies. More and more scientists in this field are aware of the need of rational experimental designs before carrying out complex, expensive and time-consuming in vitro and in vivo trials. This review highlights the importance of computer modeling and novel biofabrication techniques as critical key players for a rational design of artificial cellular niches in Tissue Engineering.
Resumo:
The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
Voluntary and compliance markets for forest carbon and other (emission avoidance and biosequestration) activities are growing internationally and across Australia. Queensland and its Natural Resource Management (NRM) regions have an opportunity to take a variety of actions to help guide these markets to secure multiple landscape benefits and to build landscape resilience in the face of climate change. As the national arrangements for offsets within Australia’s Clean Energy Package (CEP) and emissions trading environment emerge, Queensland’s regions can prepare themselves and their landholding communities to take advantage of these opportunities to deliver improved climate resilience in their regional landscapes.
Resumo:
Concern about the risk of harmful human-induced climate change has resulted in international efforts to reduce greenhouse gas emissions to the atmosphere. We review the international and national context for consideration of greenhouse abatement in native vegetation management and discuss potential options in Queensland. Queensland has large areas of productive or potentially productive land with native woody vegetation cover with approximately 76 million ha with woody cover remaining in 1991. High rates of tree clearing, predominantly to increase pasture productivity, continued throughout the 1990s with an average 345,000 ha/a estimated to have been cleared, including non-remnant (woody regrowth) as well as remnant vegetation. Estimates of greenhouse gas emissions associated with land clearing currently have a high uncertainty but clearing was reported to contribute a significant proportion of Australia's total greenhouse gas emissions from 1990 (21%) to 1999 (13%). In Queensland, greenhouse emissions from land clearing were estimated to have been 54.5 Mt CO(2)-e in 1999. Management of native vegetation for timber harvesting and the proliferation of woody vegetation (vegetation thickening) in the grazed woodlands also represent large carbon fluxes. Forestry (plantations and native forests) in Queensland was reported to be a 4.4 Mt CO(2)-e sink in 1999 but there are a lack of comprehensive data on timber harvesting in private hardwood forests. Vegetation thickening is reported for large areas of the c. 60 million ha grazed woodlands in Queensland. The magnitude of the carbon sink in 27 million ha grazed eucalypt woodlands has been estimated to be 66 Mt CO(2)-e/a but this sink is not currently included in Australia's inventory of anthropogenic greenhouse emissions. Improved understanding of the function and dynamics of natural and managed ecosystems is required to support management of native vegetation to preserve and enhance carbon stocks for greenhouse benefits while meeting objectives of sustainable and productive management and biodiversity protection.
Resumo:
Both environmental economists and policy makers have shown a great deal of interest in the effect of pollution abatement on environmental efficiency. In line with the modern resources available, however, no contribution is brought to the environmental economics field with the Markov chain Monte Carlo (MCMC) application, which enables simulation from a distribution of a Markov chain and simulating from the chain until it approaches equilibrium. The probability density functions gained prominence with the advantages over classical statistical methods in its simultaneous inference and incorporation of any prior information on all model parameters. This paper concentrated on this point with the application of MCMC to the database of China, the largest developing country with rapid economic growth and serious environmental pollution in recent years. The variables cover the economic output and pollution abatement cost from the year 1992 to 2003. We test the causal direction between pollution abatement cost and environmental efficiency with MCMC simulation. We found that the pollution abatement cost causes an increase in environmental efficiency through the algorithm application, which makes it conceivable that the environmental policy makers should make more substantial measures to reduce pollution in the near future.
Resumo:
This study analyzes the management of air pollutant substance in Chinese industrial sectors from 1998 to 2009. Decomposition analysis applying the logarithmic mean divisia index is used to analyze changes in emissions of air pollutants with a focus on the following five factors: coal pollution intensity (CPI), end-of-pipe treatment (EOP), the energy mix (EM), productive efficiency change (EFF), and production scale changes (PSC). Three pollutants are the main focus of this study: sulfur dioxide (SO2), dust, and soot. The novelty of this paper is focusing on the impact of the elimination policy on air pollution management in China by type of industry using the scale merit effect for pollution abatement technology change. First, the increase in SO2 emissions from Chinese industrial sectors because of the increase in the production scale is demonstrated. However, the EOP equipment that induced this change and improvements in energy efficiency has prevented an increase in SO2 emissions that is commensurate with the increase in production. Second, soot emissions were successfully reduced and controlled in all industries except the steel industry between 1998 and 2009, even though the production scale expanded for these industries. This reduction was achieved through improvements in EOP technology and in energy efficiency. Dust emissions decreased by nearly 65% between 1998 and 2009 in the Chinese industrial sectors. This successful reduction in emissions was achieved by implementing EOP technology and pollution prevention activities during the production processes, especially in the cement industry. Finally, pollution prevention in the cement industry is shown to result from production technology development rather than scale merit. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Because of China's extremely rapid economic growth, the scale and seriousness of environmental problems is no longer in doubt. Whether pollution abatement technologies are utilized more efficiently is crucial in the analysis of environmental management in China. This study analyzes how the performance of environmental management has changed over time using province level data for 1992-2003. Mixed results for environmental performance are shown using nonparametric estimation technique. We find that environmental performance index, abatement effort, and increasing returns to pollution abatement play important roles in determining the pollution level over the period of the study.
Resumo:
Swietenia macrophylla King (Meliaceae: Swietenioideae) provides one of the premier timbers of the world. The mahogany shoot borer Hypsipyla robusta Moore (Lepidoptera: Pyralidae) is an economically important pest of S. macrophylla throughout Asia, Africa and the Pacific. No viable method of controlling this pest is known. Previous observations have suggested that the presence of overhead shade may reduce attack by H. robusta, but this has not been investigated experimentally. This research was therefore designed to assess the influence of light availability on shoot-borer attack on S. macrophylla, by establishing seedlings under three different artificial shade regimes, then using these seedlings to test oviposition preference of adult moths, neonate larval survival and growth and development of shoot borer larvae. Oviposition preference of shoot borer moths was tested on leaves from seedlings grown under artificial shade for 63 weeks. A significant difference in choice was recorded between treatments, with 27.4 ± 1.5 eggs laid under high shade and 87.1 ± 1.8 under low shade. Neonate larval survival on early flushing leaflets of S. macrophylla did not differ significantly between shade treatments. Larval growth rate, estimated by measuring daily frass width, was significantly higher for those larvae fed on seedlings from the high and medium shade treatments (0.1 mm/day), than the low shade treatment (0.06 mm/day). In laboratory-reared larvae, the total mass of frass produced was significantly higher in the high shade treatment (0.4 g) than under the low shade treatment (0.2 g). Longer tunnel lengths were bored by larvae in plants grown under high shade (12.0 ± 2.4 cm) than under low shade (7.07 ± 1.9 cm). However, pupal mass under low shade was 48% higher than that under the high shade treatment, suggesting that plants grown under high shade were of lower nutritional quality for shoot borer larvae. These results indicate that shading of mahogany seedlings may reduce the incidence of shoot borer attack, by influencing both oviposition and larval development. The establishment of mahogany under suitable shade regimes may therefore provide a basis for controlling shoot borer attack using silvicultural approaches.
Resumo:
In the years since Nicolas Bourriaud’s Relational Aesthetics (1998) was published, a plethora of books (Shannon Jackson’s Social Works: Performing Art, Supporting Publics [2011], Nato Thompson’s Living as Form: Socially Engaged Art from 1991–2011 [2011], Grant Kester’s Conversation Pieces: Community and Communication in Modern Art [2004], Pablo Helguera’s Education for Socially Engaged Art: A Material and Techniques Handbook [2011]), conferences and articles have surfaced creating a rich and textured discourse that has responded to, critiqued and reconfigured the proposed social utopias of Bourriaud’s aesthetics. As a touchstone for this emerging discourse, Relational Aesthetics outlines in a contemporary context the plethora of social and process-based art forms that took as their medium the ‘social’. It is, however, Clare Bishop’s book Artificial Hells: Participatory Art and the Politics of Spectatorship (Verso), that offers a deeper art historical and theoretically considered rendering of this growing and complicated form of art, and forms a central body of work in this broad constellation of writings about participatory art, or social practice art/socially engaged art (SEA), as it is now commonly known...