138 resultados para Allergy and Immunology
Resumo:
Aims: This study investigated the association between the basal (rest) insulin-signaling proteins, Akt, and the Akt substrate AS160, metabolic risk factors, inflammatory markers and aerobic fitness, in middle-aged women with varying numbers of metabolic risk factors for type 2 diabetes. Methods: Sixteen women (n = 16) aged 51.3+/-5.1 (mean +/-SD) years provided muscle biopsies and blood samples at rest. In addition, anthropometric characteristics and aerobic power were assessed and the number of metabolic risk factors for each participant was determined (IDF criteria). Results: The mean number of metabolic risk factors was 1.6+/-1.2. Total Akt was negatively correlated with IL-1 beta (r = -0.45, p = 0.046), IL-6 (r = -0.44, p = 0.052) and TNF-alpha (r = -0.51, p = 0.025). Phosphorylated AS160 was positively correlated with HDL (r = 0.58, p = 0.024) and aerobic fitness (r = 0.51, p = 0.047). Furthermore, a multiple regression analysis revealed that both HDL (t = 2.5, p = 0.032) and VO(2peak) (t = 2.4, p = 0.037) were better predictors for phosphorylated AS160 than TNF-alpha or IL-6 (p>0.05). Conclusions: Elevated inflammatory markers and increased metabolic risk factors may inhibit insulin-signaling protein phosphorylation in middle-aged women, thereby increasing insulin resistance under basal conditions. Furthermore, higher HDL and fitness levels are associated with an increased AS160 phosphorylation, which may in turn reduce insulin resistance.
Resumo:
Nutritional practices that promote good health and optimal athletic performance are of interest to athletes, coaches, exercise scientists and dietitians. Probiotic supplements modulate the intestinal microbial flora and offer promise as a practical means of enhancing gut and immune function. The intestinal microbial flora consists of diverse bacterial species that inhabit the gastrointestinal tract. These bacteria are integral to the ontogeny and regulation of the immune system, protection of the body from injection, and maintenance of intestinal homeostasis. The interaction of the gut microbial flora with intestinal epithelial cells and immune cells exerts beneficial effects on the upper respiratory tract, skin and uro-genital tract. The capacity for probiotics to modulate perturbations in immune function after exercise highlight their potential for use in individuals exposed to high degrees of physical and environment stress. Future studies are required to address issues of dose-response in various exercise settings, the magnitude of species-specific effects, mechanisms of action and clinical outcomes in terms of health and performance.
Resumo:
Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.
Resumo:
Human papillomaviruses (HPVs) are obligate epithelial pathogens and typically cause localized mucosal infections. We therefore hypothesized that T-cell responses to HPV antigens would be greater at sites of pathology than in the blood. Focusing on HPV-16 because of its association with cervical cancer, the magnitude of HPV-specific T-cell responses at the cervix was compared with those in the peripheral blood by intracellular cytokine staining following direct ex vivo stimulation with both virus-like particles assembled from the major capsid protein L1, and the major HPV oncoprotein, E7. We show that both CD4 + and CD8 + T cells from the cervix responded to the HPV-16 antigens and that interferon-γ (IFN-γ) production was HPV type-specific. Comparing HPV-specific T-cell IFN-γ responses at the cervix with those in the blood, we found that while CD4 + and CD8 + T-cell responses to L1 were significantly correlated between compartments (P = 0.02 and P = 0.05, respectively), IFN-γ responses in both T-cell subsets were significantly greater in magnitude at the cervix than in peripheral blood (P = 0.02 and P = 0.003, respectively). In contrast, both CD4 + and CD8 + T-cell IFN-γ responses to E7 were of similar magnitude in both compartments and CD8 + responses were significantly correlated between these distinct immunological compartments (P = 0.04). We therefore show that inflammatory T-cell responses against L1 (but not E7) demonstrate clear compartmental bias and the magnitude of these responses do reflect local viral replication but that correlation of HPV-specific responses between compartments indicates their linkage.
Resumo:
Murine intestinal intraepithelial lymphocytes (IEL) have been shown to contain subsets of alpha/beta TCR+ and gamma/delta TCR+ T cells that spontaneously produce cytokines such as IFN-gamma and IL-5. We have now determined the nature and cell cycle stage of these cytokine-producing T lymphocytes in EIL by using IFN-gamma- and IL-5-specific ELISPOT assay, cytokine-specific mRNA-cDNA dot-blot hybridization and polymerase chain reaction, and flow cytometry (FACS) for DNA analysis. When CD3+ T cells from IEL of normal C3H/HeN mice were separated into low and high density fractions by discontinuous Percoll gradients, IFN-gamma and IL-5 spot-forming cells were only found in the former population. Analysis of mRNA for these cytokines by both IFN-gamma- and IL-5-specific dot-blot hybridization and polymerase chain reaction revealed that higher levels of message for IFN-gamma and IL-5 were also seen in the low density fraction. However, cell cycle analysis of these two fractions by FACS using propidium iodide showed a similar pattern of cell cycle stages in both low and high density populations (G0 + G1 approximately 96 to 98% and S/G2 + M approximately 2 to 4%). Finally, mRNA from gamma/delta TCR+ and alpha/beta TCR+ T cells in both low and high density fractions of IEL were analyzed for IFN-gamma and IL-5 message by polymerase chain reaction. After 35 cycles of amplification, both gamma/delta TCR+ and alpha/beta TCR+ T cells in the low density fraction expressed higher levels of message for these two cytokines when compared with the high density population. These results have now shown that both gamma/delta and alpha/beta TCR+ IEL can be separated into low and high density subsets and both fractions possess a similar stage of cell cycle. However, only the low density cells (in G1 phase) of both gamma/delta and alpha/beta TCR types possess increased cytokine-specific mRNA and produce the cytokines IFN-gamma and IL-5. Our results suggest that alpha/beta TCR+ and gamma/delta TCR+ IEL can produce cytokines without cell proliferation.
Resumo:
Bovine colostrum has been shown to influence the cytokine production of bovine leukocytes. However, it remains unknown whether processed bovine colostrum, a supplement popular among athletes to enhance immune function, is able to modulate cytokine secretion of human lymphocytes and monocytes. The aim of this investigation was to determine the influence of a commercially available bovine colostrum protein concentrate (CPC) to stimulate cytokine production by human peripheral blood mononuclear cells (PBMCs). Blood was sampled from four healthy male endurance athletes who had abstained from exercise for 48 h. PBMCs were separated and cultured with bovine CPC concentrations of 0 (control), 1.25, 2.5, and 5% with and without lipopolysaccharide (LPS) (3 microg/mL) and phytohemagglutinin (PHA) (2.5 microg/mL). Cell supernatants were collected at 6 and 24 h of culture for the determination of tumor necrosis factor (TNF), interferon (IFN)-gamma, interleukin (IL)-10, IL-6, IL-4, and IL-2 concentrations. Bovine CPC significantly stimulated the release of IFN-gamma, IL-10, and IL-2 (p < 0.03). The addition of LPS to PBMCs cocultured with bovine CPC significantly stimulated the release of IL-2 and inhibited the early release of TNF, IL-6, and IL-4 (p < 0.02). Phytohemagglutinin stimulation in combination with bovine CPC significantly increased the secretion of IL-10 and IL-2 at 6 h of culture and inhibited IFN-gamma and TNF (p < 0.05). This data show that a commercial bovine CPC is able to modulate in vitro cytokine production of human PBMCs. Alterations in cytokine secretion may be a potential mechanism for reported benefits associated with supplementation.
Resumo:
PURPOSE: Heat stress might attenuate the effects of carbohydrate on immunoendocrine responses to exercise by increasing endogenous glucose production and reducing the rate of exogenous carbohydrate oxidation. The authors compared the efficacy of carbohydrate consumption on immune responses to exercise in temperate vs. hot conditions. METHODS: Ten male cyclists exercised on 2 separate occasions in temperate (18.1 +/- 0.4 degrees C, 58% +/- 8% relative humidity) and on another 2 occasions in hot conditions (32.2 +/- 0.7 degrees C, 55% +/- 2% relative humidity). On each occasion, the cyclists exercised in a fed state for 90 min at approximately 60% VO2max and then completed a 16.1-km time trial. Every 15 min during the first 90 min of exercise, they consumed 0.24 g/kg body mass of a carbohydrate or placebo gel. RESULTS: Neutrophil counts increased during exercise in all trials (p < .05) and were significantly lower (40%, p = .006) after the carbohydrate than after the placebo trial in 32 degrees C. The concentrations of serum interleukin (IL)-6, IL-8, and IL-10 and plasma granulocyte-colony-stimulating factor, myeloperoxidase, and calprotectin also increased during exercise in all trials but did not differ significantly between the carbohydrate and placebo trials. Plasma norepinephrine concentration increased during exercise in all trials and was significantly higher (50%, p = .01) after the carbohydrate vs. the placebo trial in 32 degrees C. CONCLUSION: Carbohydrate ingestion attenuated neutrophil counts during exercise in hot conditions, whereas it had no effect on any other immune variables in either temperate or hot conditions.
Resumo:
Problem: Chlamydia trachomatis genital tract infections are easily treated with antibiotics, however the majority of infections are asymptomatic and therefore untreated, highlighting the need for a vaccine. Because most infections are asymptomatic, vaccination could potentially be administered to individuals who may have an acute infection at that time. In such individuals the effect of vaccination on the existing infection is unknown; however one potential outcome could be the development of a persistent infection. In vitro chlamydial persistence has been well characterized in various strains, however there have been no reported studies in C. muridarum. Method of Study: We performed ultrastructural characterization, and transcriptome analysis of selected genes. We then used the transcriptional profiles of the selected genes to examine whether intranasal immunization of mice during an active genital infection would induce persistence in the upper reproductive tract of female mice. Results and Conclusions: We found that persistence developed in the oviducts of mice as a result of immunization. This is a significant finding, not only because it is the first time that C. muridarum persistence has been characterized in vitro, but also due to the fact that there is minimal characterization of in vivo persistence of any chlamydial species. This highlights the importance of the timing of vaccination in individuals.
Resumo:
Previous studies have measured cytokine expression within follicular fluid collected at the time of trans-vaginal oocyte retrieval and compared the profiles with the aetiology of infertility and/or successful or unsuccessful assisted reproductive technology (ART) outcomes. Seventy-one paired follicular fluid and vaginal swab specimens collected from ART patients were cultured to detect microorganisms and then were tested for the presence of cytokines by multiplex fluorescence bead assays. Specimen selection was based on two criteria: whether the follicular fluid specimen was colonised (with microorganisms prior to oocyte retrieval) or contaminated by lower genital tract microflora at the time of oocyte retrieval and; the aetiology of infertility...
Resumo:
Neutrophils produce free radicals known as reactive oxygen species (ROS), which assist in the clearance of damaged host tissue. Tissue damage may occur during exercise due to muscle damage, thermal stress and ischaemia/reperfusion. When produced in excess, neutrophil-derived ROS may overwhelm the body's endogenous antioxidant defence mechanisms, and this can lead to oxidative stress. There is increasing evidence for links between oxidative stress and a variety of pathological disorders such as cardiovascular diseases, cancer, chronic inflammatory diseases and post-ischaemic organ injury. A small number of studies have investigated whether there is a link between neutrophil activation and oxidative stress during exercise. In this review, we have summarised the findings of these studies. Exercise promotes the release of neutrophils into the circulation, and some evidence suggests that neutrophils mobilised after exercise have an enhanced capacity to generate some forms of ROS when stimulated in vitro. Neutrophil activation during exercise may challenge endogenous antioxidant defence mechanisms, but does not appear to increase lipid markers of oxidative stress to any significant degree, at least in the circulation. Antioxidant supplements such as N-acetylcysteine are effective at attenuating increases in the capacity of neutrophils to generate ROS when stimulated in vitro, whereas vitamin E reduces tissue infiltration of neutrophils during exercise. Free radicals generated during intense exercise may lead to DNA damage in leukocytes, but it is unknown if this damage is the result of neutrophil activation. Exercise enhances the expression of inducible haem (heme)-oxygenase (HO-1) in neutrophils after exercise, however, it is uncertain whether oxidative stress is the stimulus for this response.
Resumo:
Neutrophils constitute 50-60% of all circulating leukocytes; they present the first line of microbicidal defense and are involved in inflammatory responses. To examine immunocompetence in athletes, numerous studies have investigated the effects of exercise on the number of circulating neutrophils and their response to stimulation by chemotactic stimuli and activating factors. Exercise causes a biphasic increase in the number of neutrophils in the blood, arising from increases in catecholamine and cortisol concentrations. Moderate intensity exercise may enhance neutrophil respiratory burst activity, possibly through increases in the concentrations of growth hormone and the inflammatory cytokine IL-6. In contrast, intense or long duration exercise may suppress neutrophil degranulation and the production of reactive oxidants via elevated circulating concentrations of epinephrine (adrenaline) and cortisol. There is evidence of neutrophil degranulation and activation of the respiratory burst following exercise-induced muscle damage. In principle, improved responsiveness of neutrophils to stimulation following exercise of moderate intensity could mean that individuals participating in moderate exercise may have improved resistance to infection. Conversely, competitive athletes undertaking regular intense exercise may be at greater risk of contracting illness. However, there are limited data to support this concept. To elucidate the cellular mechanisms involved in the neutrophil responses to exercise, researchers have examined changes in the expression of cell membrane receptors, the production and release of reactive oxidants and more recently, calcium signaling. The investigation of possible modifications of other signal transduction events following exercise has not been possible because of current methodological limitations. At present, variation in exercise-induced alterations in neutrophil function appears to be due to differences in exercise protocols, training status, sampling points and laboratory assay techniques.
Resumo:
Background aims Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation. Methods MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells. Results Human L-MSC cultures were typically CD34−, CD45− and HLA-DR− and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation. Conclusions L-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model.
Resumo:
Deleterious responses to pathogens during infancy may contribute to infection and associated asthma. Chlamydia respiratory infections in early life are common causes of pneumonia and lead to reduced lung function and asthma. We investigated the role of interleukin-13 (IL-13) in promoting early-life Chlamydia respiratory infection, infection-induced airway hyperresponsiveness (AHR), and severe allergic airway disease (AAD). Infected infant Il13−/− mice had reduced infection, inflammation, and mucus-secreting cell hyperplasia. Surprisingly, infection of wild-type (WT) mice did not increase IL-13 production but reduced IL-13Rα2 decoy receptor levels compared with sham-inoculated controls. Infection of WT but not Il13−/− mice induced persistent AHR. Infection and associated pathology were restored in infected Il13−/− mice by reconstitution with IL-13. Stat6−/− mice were also largely protected. Neutralization of IL-13 during infection prevented subsequent infection-induced severe AAD. Thus, early-life Chlamydia respiratory infection reduces IL-13Rα2 production, which may enhance the effects of constitutive IL-13 and promote more severe infection, persistent AHR, and AAD.
Resumo:
IL-17 is believed to be important for protection against extracellular pathogens, where clearance is dependent on neutrophil recruitment and local activation of epithelial cell defences. However, the role of IL-17 in protection against intracellular pathogens such as Chlamydia is less clear. We have compared (i) the course of natural genital tract C. muridarum infection, (ii) the development of oviduct pathology and (iii) the development of vaccine-induced immunity against infection in wild type (WT) BALB/c and IL-17 knockout mice (IL-17-/-) to determine if IL-17-mediated immunity is implicated in the development of infection-induced pathology and/or protection. Both the magnitude and duration of genital infection was significantly reduced in IL-17-/- mice compared to BALB/c. Similarly, hydrosalpinx was also greatly reduced in IL-17-/- mice and this correlated with reduced neutrophil and macrophage infiltration of oviduct tissues. Matrix metalloproteinase (MMP) 9 and MMP2 were increased in WT oviducts compared to IL-17-/- animals at day 7 post-infection. In contrast, oviducts from IL-17-/- mice contained higher MMP9 and MMP2 at day 21. Infection also elicited higher levels of Chlamydia-neutralizing antibody in serum of IL-17-/- mice than WT mice. Following intranasal immunization with C. muridarum Major Outer Membrane Protein (MOMP) and cholera toxin plus CpG adjuvants, significantly higher levels of chlamydial MOMP-specific IgG and IgA were found in serum and vaginal washes of IL-17-/- mice. T cell proliferation and IFNγ production by splenocytes was greater in WT animals following in vitro re-stimulation, however vaccination was only effective at reducing infection in WT, not IL-17-/- mice. Intranasal or transcutaneous immunization protected WT but not IL-17-/- mice against hydrosalpinx development. Our data show that in the absence of IL-17, the severity of C. muridarum genital infection and associated oviduct pathology are significantly attenuated, however neither infection or pathology can be reduced further by vaccination protocols that effectively protect WT mice.
Resumo:
The relationship of acetylcholine receptor (AchR) antibodies to disease activity in myasthenia gravis (MG) is controversial. Some authors claim a direct correlation with disease activity and treatment, in particular plasmapheresis therapy, whereas others have commented on the poor overall correlation of antibody levels with clinical state. Antibody levels were examined in a population of MG patients and correlated with disease activity and response to treatment. Antibodies to skeletal muscle AchR were found in most patients with generalised MG (24/25) and in about half of the patients with purely ocular MG (6/10) and in neither of 2 patients with congenital MG. There was scant correlation with disease activity or response to treatment. It is concluded that the assay is more useful for diagnosis than for management of MG.