76 resultados para Agricultural surveys
Resumo:
We conducted surveys of bats in China between 1999 and 2007, resulting in the identification of at least 62 species. In this paper we present data on 19 species, comprising 12 species from the family Rhinolophidae and seven from the Hipposideridae. Rhinolophids captured were Rhinolophus affinis, R. ferrumequinum, R. lepidus, R. luctus, R. macrotis, R. siamensis, R. marshalli, R. rex, R. pearsonii, R. pusillus, R. sinicus and R. stheno. Because of extensive morphological similarities we question the species distinctiveness of R. osgoodi (may be conspecific with R. lepidus), R. paradoxolophus (which may best be treated as a subspecies of R. rex), R. huananus (probably synonymous with R. siamensis), and we are skeptical as to whether R. sinicus is distinct from R. thomasi. Hipposiderids captured were Hipposideros armiger, H. cineraceus, H. larvatus, H. pomona, H. pratti, Aselliscus stoliczkanus and Coelops frithii. Of these species, two rhinolophids (Rhinolophus marshalli and R. stheno) and one hipposiderid (Hipposideros cineraceus) represent new species records for China. We present data on species' ranges, morphology and echolocation call frequencies, as well as some notes on ecology and conservation status. China hosts a considerable diversity of rhinolophid and hipposiderid bats, yet threats to their habitats and populations are substantial.
Resumo:
Repeatable and accurate seagrass mapping is required for understanding seagrass ecology and supporting management decisions. For shallow (< 5 m) seagrass habitats, these maps can be created by integrating high spatial resolution imagery with field survey data. Field survey data for seagrass is often collected via snorkelling or diving. However, these methods are limited by environmental and safety considerations. Autonomous Underwater Vehicles (AUVs) are used increasingly to collect field data for habitat mapping, albeit mostly in deeper waters (>20 m). Here we demonstrate and evaluate the use and potential advantages of AUV field data collection for calibration and validation of seagrass habitat mapping of shallow waters (< 5 m), from multispectral satellite imagery. The study was conducted in the seagrass habitats of the Eastern Banks (142 km2), Moreton Bay, Australia. In the field, georeferenced photos of the seagrass were collected along transects via snorkelling or an AUV. Photos from both collection methods were analysed manually for seagrass species composition and then used as calibration and validation data to map seagrass using an established semi-automated object based mapping routine. A comparison of the relative advantages and disadvantages of AUV and snorkeller collected field data sets and their influence on the mapping routine was conducted. AUV data collection was more consistent, repeatable and safer in comparison to snorkeller transects. Inclusion of deeper water AUV data resulted in mapping of a larger extent of seagrass (~7 km2, 5 % of study area) in the deeper waters of the site. Although overall map accuracies did not differ considerably, inclusion of the AUV data from deeper water transects corrected errors in seagrass mapped at depths to 5 m, but where the bottom is visible on satellite imagery. Our results demonstrate that further development of AUV technology is justified for the monitoring of seagrass habitats in ongoing management programs.
Resumo:
Modern commercial agricultural practices in Asia during the last three to four decades involving chemicals (fertilisers and pesticides) have been associated with large increases in food production never witnessed before, especially under the Green Revolution technology in South Asia. This also involves large-scale increases in commercial vegetable crops. However, the high reliance on chemical inputs to bring about these increases in food production is not without problems. A visible, parallel correlation between higher productivity, high artificial input use and environmental degradation and human ill-health is evident in many countries where commercial agriculture is widespread. In this chapter, we focus on the impact of chemical inputs, in particular the impact of pesticides on the environment and on human health in South Asia with special reference to Sri Lanka...
Resumo:
The research reported in this paper explores autonomous technologies for agricultural farming application and is focused on the development of multiple-cooperative agricultural robots (AgBots). These are highly autonomous, small, lightweight, and unmanned machines that operate cooperatively (as opposed to a traditional single heavy machine) and are suited to work on broadacre land (large-scale crop operations on land parcels greater than 4,000m2). Since this is a new, and potentially disruptive technology, little is yet known about farmer attitudes towards robots, how robots might be incorporated into current farming practice, and how best to marry the capability of the robot with the work of the farmer. This paper reports preliminary insights (with a focus on farmer-robot control) gathered from field visits and contextual interviews with farmers, and contributes knowledge that will enable further work toward the design and application of agricultural robotics.
Resumo:
In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.
Resumo:
Environmental acoustic recordings can be used to perform avian species richness surveys, whereby a trained ornithologist can observe the species present by listening to the recording. This could be made more efficient by using computational methods for iteratively selecting the richest parts of a long recording for the human observer to listen to, a process known as “smart sampling”. This allows scaling up to much larger ecological datasets. In this paper we explore computational approaches based on information and diversity of selected samples. We propose to use an event detection algorithm to estimate the amount of information present in each sample. We further propose to cluster the detected events for a better estimate of this amount of information. Additionally, we present a time dispersal approach to estimating diversity between iteratively selected samples. Combinations of approaches were evaluated on seven 24-hour recordings that have been manually labeled by bird watchers. The results show that on average all the methods we have explored would allow annotators to observe more new species in fewer minutes compared to a baseline of random sampling at dawn.
Resumo:
In this study, we investigated the impact of rainfall on runoff, soil erosion and consequently on the discharge of radioactive cesium in agricultural fields in Fukushima prefecture using a rainfall simulator. Simulated heavy rainfalls (50 mm h-1) generated significant runoff and soil erosion. The average concentration of radioactive cesium (the sum of 134Cs and 137Cs) in the runoff sediments was [similar]3500 Bq kg-1 dry soil, more than double the concentrations measured in the field soils which should be considered in studies using the 137Cs loss to estimate long-term soil erosion. However, the estimated mass of cesium discharged through one runoff event was less than 2% of the cesium inventory in the field. This suggested that cesium discharge via soil erosion is not a significant factor in reducing the radioactivity of contaminated soils in Fukushima prefecture. However, the eroded sediment carrying radioactive cesium will deposit into the river systems and potentially pose a radioactivity risk for aquatic living organisms.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
Aerial surveys conducted using manned or unmanned aircraft with customized camera payloads can generate a large number of images. Manual review of these images to extract data is prohibitive in terms of time and financial resources, thus providing strong incentive to automate this process using computer vision systems. There are potential applications for these automated systems in areas such as surveillance and monitoring, precision agriculture, law enforcement, asset inspection, and wildlife assessment. In this paper, we present an efficient machine learning system for automating the detection of marine species in aerial imagery. The effectiveness of our approach can be credited to the combination of a well-suited region proposal method and the use of Deep Convolutional Neural Networks (DCNNs). In comparison to previous algorithms designed for the same purpose, we have been able to dramatically improve recall to more than 80% and improve precision to 27% by using DCNNs as the core approach.
Resumo:
Avian species richness surveys, which measure the total number of unique avian species, can be conducted via remote acoustic sensors. An immense quantity of data can be collected, which, although rich in useful information, places a great workload on the scientists who manually inspect the audio. To deal with this big data problem, we calculated acoustic indices from audio data at a one-minute resolution and used them to classify one-minute recordings into five classes. By filtering out the non-avian minutes, we can reduce the amount of data by about 50% and improve the efficiency of determining avian species richness. The experimental results show that, given 60 one-minute samples, our approach enables to direct ecologists to find about 10% more avian species.
Resumo:
Australian farmers have used precision agriculture technology for many years with the use of ground – based and satellite systems. However, these systems require the use of vehicles in order to analyse a wide area which can be time consuming and cost ineffective. Also, satellite imagery may not be accurate for analysis. Low cost of Unmanned Aerial Vehicles (UAV) present an effective method of analysing large plots of agricultural fields. As the UAV can travel over long distances and fly over multiple plots, it allows for more data to be captured by a sampling device such as a multispectral camera and analysed thereafter. This would allow farmers to analyse the health of their crops and thus focus their efforts on certain areas which may need attention. This project evaluates a multispectral camera for use on a UAV for agricultural applications.
Resumo:
Objective: To examine if streamlining a medical research funding application process saved time for applicants. Design: Cross-sectional surveys before and after the streamlining. Setting: The National Health and Medical Research Council (NHMRC) of Australia. Participants: Researchers who submitted one or more NHMRC Project Grant applications in 2012 or 2014. Main outcome measures: Average researcher time spent preparing an application and the total time for all applications in working days. Results: The average time per application increased from 34 working days before streamlining (95% CI 33 to 35) to 38 working days after streamlining (95% CI 37 to 39; mean difference 4 days, bootstrap p value <0.001). The estimated total time spent by all researchers on applications after streamlining was 614 working years, a 67-year increase from before streamlining. Conclusions: Streamlined applications were shorter but took longer to prepare on average. Researchers may be allocating a fixed amount of time to preparing funding applications based on their expected return, or may be increasing their time in response to increased competition. Many potentially productive years of researcher time are still being lost to preparing failed applications.
Resumo:
Correlations between oil and agricultural commodities have varied over previous decades, impacted by renewable fuels policy and turbulent economic conditions. We estimate smooth transition conditional correlation models for 12 agricultural commodities and WTI crude oil. While a structural change in correlations occurred concurrently with the introduction of biofuel policy, oil and food price levels are also key influences. High correlation between biofuel feedstocks and oil is more likely to occur when food and oil price levels are high. Correlation with oil returns is strong for biofuel feedstocks, unlike with other agricultural futures, suggesting limited contagion from energy to food markets.