177 resultados para Acartia danae, c5, mass
Resumo:
Characterization of mass transfer properties was achieved in the longitudinal, radial, and tangential directions for four Australian hardwood species: spotted gum, blackbutt, jarrah, and messmate. Measurement of mass transfer properties for these species was necessary to complement current vacuum drying modeling research. Water-vapour diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability values of some species and material directions were extremely low and undetectable by the mass flow meter device. Hence, a custom system based on volume evolution was conceived to determine very low, previously unpublished, wood permeability values. Mass diffusivity and permeability were lowest for spotted gum and highest for messmate. Except for messmate in the radial direction, the four species measured were less permeable in all directions than the lowest published figures, demonstrating the high impermeability of Australian hardwoods and partly accounting for their relatively slow drying rates. Permeability, water-vapour diffusivity, and associated anisotropic ratio data obtained for messmate were extreme or did not follow typical trends and is consequently the most difficult of the four woods to dry in terms of collapse and checking degradation. © The State of Queensland, Department of Agriculture, Fisheries and Forestry, 2012.
Resumo:
BACKGROUND: Frequent illness and injury among workers with high body mass index (BMI) can raise the costs of employee healthcare and reduce workforce maintenance and productivity. These issues are particularly important in vocational settings such as the military, which require good physical health, regular attendance and teamwork to operate efficiently. The purpose of this study was to compare the incidence of injury and illness, absenteeism, productivity, healthcare usage and administrative outcomes among Australian Defence Force personnel with varying BMI. METHODS: Personnel were grouped into cohorts according to the following ranges for (BMI): normal (18.5-24.9 kg/m²; n = 197), overweight (25-29.9 kg/m²; n = 154) and obese (≥30 kg/m²) with restricted body fat (≤28 % for females, ≤24 % for males) (n = 148) and with no restriction on body fat (n = 180). Medical records for each individual were audited retrospectively to record the incidence of injury and illness, absenteeism, productivity, healthcare usage (i.e., consultation with medical specialists, hospital stays, medical investigations, prescriptions) and administrative outcomes (e.g., discharge from service) over one year. These data were then grouped and compared between the cohorts. RESULTS: The prevalence of injury and illness, cost of medical specialist consultations and cost of medical scans were all higher (p <0.05) in both obese cohorts compared with the normal cohort. The estimated productivity losses from restricted work days were also higher (p <0.05) in the obese cohort with no restriction on body fat compared with the normal cohort. Within the obese cohort, the prevalence of injury and illness, healthcare usage and productivity were not significantly greater in the obese cohort with no restriction on body fat compared with the cohort with restricted body fat. The number of restricted work days, the rate of re-classification of Medical Employment Classification and the rate of discharge from service were similar between all four cohorts. CONCLUSIONS: High BMI in the military increases healthcare usage, but does not disrupt workforce maintenance. The greater prevalence of injury and illness, greater healthcare usage and lower productivity in obese Australian Defence Force personnel is not related to higher levels of body fat.
Resumo:
Vehicle emissions have been linked to detrimental health effects with children thought to be more susceptible (See e.g., Ryan et al 2005). In an urban environment a major source of organic aerosols (OA) are vehicle emissions. The ambient concentration of OA is dynamic in nature and the use of an aerosol mass spectrometer can achieve the necessary temporal resolution to capture the daily variation of OA (Jimenez et al 2009). Currently there is a limited understanding of effects of long term exposure to traffic emissions on children’s health. In the present study, we used an aerosol mass spectrometer to monitor OA and determine children’s potential exposure at school to traffic emissions.In this paper, we present the preliminary results of this investigation. The study is a part of a larger project aimed at gaining a holistic picture of the exposure of children to traffic related pollutants, known as UPTECH (www.ilaqh.qut.edu.au/Misc/ UPTECH%20Home.htm).
Resumo:
Making Sense of Mass Education provides a comprehensive analysis of the field of mass education. The book presents new assessment of traditional issues associated with education – class, race, gender, discrimination and equity –to dispel myths and assumptions about the classroom. It examines the complex relationship between the media, popular culture and schooling, and places the expectations surrounding the modern teacher within ethical, legal and historical contexts. The book blurs some of the disciplinary boundaries within the field of education, drawing upon sociology, cultural studies, history, philosophy, ethics and jurisprudence to provide stronger analyses. The book reframes the sociology of education as a complex mosaic of cultural practices, forces and innovations. Engaging and contemporary, it is an invaluable resource for teacher education students, and anyone interested in a better understanding of mass education.
Resumo:
Objectives: To compare measures of fat-free mass (FFM) by three different bioelectrical impedance analysis (BIA) devices and to assess the agreement between three different equations validated in older adult and/or overweight populations. Design: Cross-sectional study. Setting: Orthopaedics ward of Brisbane public hospital, Australia. Participants: Twenty-two overweight, older Australians (72 yr ± 6.4, BMI 34 kg/m2 ± 5.5) with knee osteoarthritis. Measurements: Body composition was measured using three BIA devices: Tanita 300-GS (foot-to-foot), Impedimed DF50 (hand-to-foot) and Impedimed SFB7 (bioelectrical impedance spectroscopy (BIS)). Three equations for predicting FFM were selected based on their ability to be applied to an older adult and/ or overweight population. Impedance values were extracted from the hand-to-foot BIA device and included in the equations to estimate FFM. Results: The mean FFM measured by BIS (57.6 kg ± 9.1) differed significantly from those measured by foot-to-foot (54.6 kg ± 8.7) and hand-to-foot BIA (53.2 kg ± 10.5) (P < 0.001). The mean ± SD FFM predicted by three equations using raw data from hand-to-foot BIA were 54.7 kg ± 8.9, 54.7 kg ± 7.9 and 52.9 kg ± 11.05 respectively. These results did not differ from the FFM predicted by the hand-to-foot device (F = 2.66, P = 0.118). Conclusions: Our results suggest that foot-to-foot and hand-to-foot BIA may be used interchangeably in overweight older adults at the group level but due to the large limits of agreement may lead to unacceptable error in individuals. There was no difference between the three prediction equations however these results should be confirmed within a larger sample and against a reference standard.
Resumo:
Fruit drying is a process of removing moisture to preserve fruits by preventing microbial spoilage. It increases shelf life, reduce weight and volume thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. But, it is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the material. In this background, the aim of this paper to develop a mathematical model to simulate coupled heat and mass transfer during convective drying of fruit. This model can be used predict the temperature and moisture distribution inside the fruits during drying. Two models were developed considering shrinkage dependent and temperature dependent moisture diffusivity and the results were compared. The governing equations of heat and mass transfer are solved and a parametric study has been done with Comsol Multiphysics 4.3. The predicted results were validated with experimental data.
Resumo:
This contribution describes two mass movement deposits (total volume ~0.5 km3) identified in seven marine cores located 8 to 15 km offshore southern Montserrat, West Indies. The deposits were emplaced in the last 35 ka and have not previously been recognised in either the subaerial or distal submarine records. Age constraints, provided by radiocarbon dating, show that an explosive volcanic eruption occurred at ca 8–12 ka, emplacing a primary eruption-related deposit that overlies a large (~0.3 km3) reworked bioclastic and volcaniclastic flow deposit, formed from a shelf collapse between 8 and 35 ka. The origin of these deposits has been deduced through the correlation of marine sediment cores, component analysis and geochemical analysis. The 8–12 ka primary volcanic deposit was likely derived from a highly-erosive pyroclastic flow from the Soufrière Hills volcano that entered the ocean and mixed with the water column forming a water-supported density current. Previous investigations of the eruption record suggested that there was a hiatus in activity at the Soufrière Hills volcano between 16 and 6 ka. The ca 8–12 ka eruptive episode identified here shows that this hiatus was shorter than previously hypothesised, and thus highlights the importance of obtaining an accurate and completemarine record of events offshore from volcanic islands and incorporating such data into eruption history reconstructions. Comparisons with the submarine deposit characteristics of the 2003 dome collapse also suggests that the ~8–12 ka eruptive episode was more explosive than eruptions from the current eruptive episode.
Resumo:
Objective: Menopause is the consequence of exhaustion of the ovarian follicular pool. AMH, an indirect hormonal marker of ovarian reserve, has been recently proposed as a predictor for age at menopause. Since BMI and smoking status are relevant independent factors associated with age at menopause we evaluated whether a model including all three of these variables could improve AMH-based prediction of age at menopause. Methods: In the present cohort study, participants were 375 eumenorrheic women aged 19–44 years and a sample of 2,635 Italian menopausal women. AMH values were obtained from the eumenorrheic women. Results: Regression analysis of the AMH data showed that a quadratic function of age provided a good description of these data plotted on a logarithmic scale, with a distribution of residual deviates that was not normal but showed significant leftskewness. Under the hypothesis that menopause can be predicted by AMH dropping below a critical threshold, a model predicting menopausal age was constructed from the AMH regression model and applied to the data on menopause. With the AMH threshold dependent on the covariates BMI and smoking status, the effects of these covariates were shown to be highly significant. Conclusions: In the present study we confirmed the good level of conformity between the distributions of observed and AMH-predicted ages at menopause, and showed that using BMI and smoking status as additional variables improves AMH-based prediction of age at menopause.
Resumo:
Long term exposure to vehicle emissions has been associated with harmful health effects. Children are amongst the most susceptible group and schools represent an environment where they can experience significant exposure to vehicle emissions. However, there are limited studies on children’s exposure to vehicle emissions in schools. The aim of this study was to quantify the concentration of organic aerosol and in particular, vehicle emissions that children are exposed to during school hours. Therefore an Aerodyne compact time-of-flight aerosol mass spectrometer (TOF-AMS) was deployed at five urban schools in Brisbane, Australia. The TOF-AMS enabled the chemical composition of the non- refractory (NR-PM1) to be analysed with a high temporal resolution to assess the concentration of vehicle emissions and other organic aerosols during school hours. At each school the organic fraction comprised the majority of NR-PM1 with secondary organic aerosols as the main constitute. At two of the schools, a significant source of the organic aerosol (OA) was slightly aged vehicle emissions from nearby highways. More aged and oxidised OA was observed at the other three schools, which also recorded strong biomass burning influences. Primary emissions were found to dominate the OA at only one school which had an O:C ratio of 0.17, due to fuel powered gardening equipment used near the TOF-AMS. The diurnal cycle of OA concentration varied between schools and was found to be at a minimum during school hours. The major organic component that school children were exposed to during school hours was secondary OA. Peak exposure of school children to HOA occurred during school drop off and pick up times. Unless a school is located near major roads, children are exposed predominately to regional secondary OA as opposed to local emissions during schools hours in urban environments.
Resumo:
Australia's mass market fashion labels have traditionally benefitted from their peripheral location to the world's fashion centres. Operating a season behind, Australian mass market designers and buyers were well-placed to watch trends play out overseas before testing them in the Australian marketplace. For this reason, often a designer's role was to source and oversee the manufacture of 'knock-offs', or close copies of northern hemisphere mass market garments. Both Weller and Walsh have commented on this practice.12 The knock-on effect from this continues to be a cautious, derivative fashion sensibility within Australian mass market fashion design, where any new trend or product is first tested and proved overseas months earlier. However, there is evidence that this is changing. The rapid online dissemination of global fashion trends, coupled with the Australian consumer’s willingness to shop online, has meant that the ‘knock-off’ is less viable. For this reason, a number of mass market companies are moving away from the practice of direct sourcing and are developing product in-house under a northern hemisphere model. This shift is also witnessed in the trend for mass market companies to develop collections in partnership with independent Australian designers. This paper explores the current and potential effects of these shifts within Australian mass market design practice, and discusses how they may impact on both consumers and on the wider culture of Australian fashion.
Resumo:
The production of fashion garments has negative environmental and social impacts that can potentially be reduced through decisions made in the design process. This research explores to what extent Australian mass-market fashion designers consider environmental sustainability within product design. The study presents three case studies from different market levels, assembled through interviews with designers, along with an analysis of the Australian mass-market fashion industry. The project provides insights into the workings of the fashion design process within mid and high volume companies, and identifies opportunities and barriers for consideration of sustainability.
Resumo:
Currently, mass spectrometry-based metabolomics studies extend beyond conventional chemical categorization and metabolic phenotype analysis to understanding gene function in various biological contexts (e.g., mammalian, plant, and microbial). These novel utilities have led to many innovative discoveries in the following areas: disease pathogenesis, therapeutic pathway or target identification, the biochemistry of animal and plant physiological and pathological activities in response to diverse stimuli, and molecular signatures of host-pathogen interactions during microbial infection. In this review, we critically evaluate the representative applications of mass spectrometry-based metabolomics to better understand gene function in diverse biological contexts, with special emphasis on working principles, study protocols, and possible future development of this technique. Collectively, this review raises awareness within the biomedical community of the scientific value and applicability of mass spectrometry-based metabolomics strategies to better understand gene function, thus advancing this application's utility in a broad range of biological fields
Resumo:
This paper was designed to study metabonomic characters of the hepatotoxicity induced by alcohol and the intervention effects of Yin Chen Hao Tang (YCHT), a classic traditional Chinese medicine formula for treatment of jaundice and liver disorders in China. Urinary samples from control, alcohol- and YCHT-treated rats were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) in positive ionization mode. The total ion chromatograms obtained from the control, alcohol- and YCHT-treated rats were easily distinguishable using a multivariate statistical analysis method such as the principal components analysis (PCA). The greatest difference in metabolic profiling was observed from alcohol-treated rats compared with the control and YCHT-treated rats. The positive ions m/z 664.3126 (9.00 min) was elevated in urine of alcohol-treated rats, whereas, ions m/z 155.3547 (10.96 min) and 708.2932 (9.01 min) were at a lower concentration compared with that in urine of control rats, however, these ions did not indicate a statistical difference between control rats and YCHT-treated rats. The ion m/z 664.3126 was found to correspond to ceramide (d18:1/25:0), providing further support for an involvement of the sphingomyelin signaling pathway in alcohol hepatotoxicity and the intervention effects of YCHT.
Resumo:
Scoparone (6,7-dimethoxycoumarin) is known to have a wide range of pharmacological properties. In this study, a rapid and validated ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-QTof-MS) method was developed to investigate the metabolism of scoparone in rat for the first time. The new method reduced the sample handling and analytical time by three- to six-fold, and the detection limit by five- to 1000-fold, compared to published methods. Far more metabolites were detected and identified compared to published data, which were preliminarily identified as scopoletin, isoscopoletin, isofraxidin, and fraxidin, respectively, when subjected to tandem mass spectrometry analyses. It is found that the metabolic trajectory of scoparone in rat focused on phase I metabolism which is obviously different from published results, and revealed a wide range of pharmacological properties of scoparone partly attributed to the bioactivities of its metabolites.
Resumo:
Mass flows on volcanic islands generated by volcanic lava dome collapse and by larger-volume flank collapse can be highly dangerous locally and may generate tsunamis that threaten a wider area. It is therefore important to understand their frequency, emplacement dynamics, and relationship to volcanic eruption cycles. The best record of mass flow on volcanic islands may be found offshore, where most material is deposited and where intervening hemipelagic sediment aids dating. Here we analyze what is arguably the most comprehensive sediment core data set collected offshore from a volcanic island. The cores are located southeast of Montserrat, on which the Soufriere Hills volcano has been erupting since 1995. The cores provide a record of mass flow events during the last 110 thousand years. Older mass flow deposits differ significantly from those generated by the repeated lava dome collapses observed since 1995. The oldest mass flow deposit originated through collapse of the basaltic South Soufriere Hills at 103-110 ka, some 20-30 ka after eruptions formed this volcanic center. A ∼1.8 km3 blocky debris avalanche deposit that extends from a chute in the island shelf records a particularly deep-seated failure. It likely formed from a collapse of almost equal amounts of volcanic edifice and coeval carbonate shelf, emplacing a mixed bioclastic-andesitic turbidite in a complex series of stages. This study illustrates how volcanic island growth and collapse involved extensive, large-volume submarine mass flows with highly variable composition. Runout turbidites indicate that mass flows are emplaced either in multiple stages or as single events.