164 resultados para 165-1002B
Resumo:
Management scholars and practitioners emphasize the importance of the size and diversity of a knowledge worker's social network. Constraints on knowledge workers’ time and energy suggest that more is not always better. Further, why and how larger networks contribute to valuable outcomes deserves further understanding. In this study, we offer hypotheses to shed insight on the question of the diminishing returns of large networks and the specific form of network diversity that may contribute to innovative performance among knowledge workers. We tested our hypotheses using data collected from 93 R&D engineers in a Sino-German automobile electronics company located in China. Study findings identified an inflection point, confirming our hypothesis that the size of the knowledge worker's egocentric network has an inverted U-shaped effect on job performance. We further demonstrate that network dispersion richness (the number of cohorts that the focal employee has connections to) rather than network dispersion evenness (equal distribution of ties across the cohorts) has more influence on the knowledge worker's job performance. Additionally, we found that the curvilinear effect of network size is fully mediated by network dispersion richness. Implications for future research on social networks in China and Western contexts are discussed.
Resumo:
Issue addressed: The importance of advocacy in protecting the population’s health; and suggested strategies to advance an advocacy role. Discussion: This article explores the concept of health advocacy, discusses an example of successful health advocacy within Australia, and outlines and addresses some of the barriers to advocacy. It aims to encourage discussion on advocacy’s potential to improve the public’s health. Conclusions: Many of the major successes of health promotion have been facilitated through the efforts of advocates. This article supports the proposition that advocacy is a fundamental instrument of health promotion practice and suggests strategies to apply these principles in practice.
Resumo:
The railway industry has been slow to adopt limit states principles in the structural design of concrete sleepers for its tracks, despite the global take up of this form of design for almost every other type of structural element. Concrete sleeper design is still based on limiting stresses but is widely perceived by track engineers to lead to untapped reserves of strength in the sleepers. Limit design is a more rational philosophy, especially where it is based on the ultimate dynamic capacity of the concrete sleepers. The paper describes the development of equations and factors for a limit design methodology for concrete sleepers in flexure using a probabilistic evaluation of sleeper loading. The new method will also permit a cogent, defensible means of establishing the true capacity of the billions of concrete sleepers that are currently in-track around the world, leading to better utilisation of track infrastructure. The paper demonstrates how significant cost savings may be achieved by track owners.
Resumo:
Recently updated information has raised a concern over not only the existing cost-ineffective design method but also the unrealistic analysis mode of railroad prestressed concrete sleepers. Because of the deficient knowledge in the past, railway civil engineers have been mostly aware of the over-conservative design methods for structural components in any railway track, which rely on allowable stresses and material strength reductions. Based on a number of proven experiments and field data, it is believed that the concrete sleepers which complied with the allowable stress concept possess unduly untapped fracture toughness. A collaborative research project run by the Australian Cooperative Research Centre for Railway Engineering and Technologies (RailCRC) was initiated to ascertain the reserved capacity of Australian railway prestressed concrete sleepers designed using the existing design code. The findings have led to the development of a new limit states design concept. This briefing highlights the conventional and the new limit states design philosophies and their implication to both the railway and the public community.
Resumo:
Schizophrenia is often characterised by diminished self-experience. This article describes the development and principles of a manual for a psychotherapeutic treatment model that aims to enhance self-experience in people diagnosed with schizophrenia. Metacognitive Narrative Psychotherapy draws upon dialogical theory of self and the work of Lysaker and colleagues, in conjunction with narrative principles of therapy as operationalised by Vromans. To date, no manual for a metacognitive narrative approach to the treatment of schizophrenia exists. After a brief description of narrative understandings of schizophrenia, the development of the manual is described. Five general phases of treatment are outlined: (1) developing a therapeutic relationship; (2) eliciting narratives; (3) enhancing metacognitive capacity; (4) enriching narratives, and; (5) living enriched narratives. Proscribed practices are also described. Examples of therapeutic interventions and dialogue are provided to further explain the application of interventions in-session. The manual has been piloted in a study investigating the effectiveness of Metacognitive Narrative Psychotherapy in the treatment of people diagnosed with schizophrenia spectrum disorders.
Resumo:
Vertical displacements are one of the most relevant parameters for structural health monitoring of bridges in both the short and long terms. Bridge managers around the globe are always looking for a simple way to measure vertical displacements of bridges. However, it is difficult to carry out such measurements. On the other hand, in recent years, with the advancement of fiber-optic technologies, fiber Bragg grating (FBG) sensors are more commonly used in structural health monitoring due to their outstanding advantages including multiplexing capability, immunity of electromagnetic interference as well as high resolution and accuracy. For these reasons, using FBG sensors is proposed to develop a simple, inexpensive and practical method to measure vertical displacements of bridges. A curvature approach for vertical displacement measurements using curvature measurements is proposed. In addition, with the successful development of FBG tilt sensors, an inclination approach is also proposed using inclination measurements. A series of simulation tests of a full- scale bridge was conducted. It shows that both of the approaches can be implemented to determine vertical displacements for bridges with various support conditions, varying stiffness (EI) along the spans and without any prior known loading. These approaches can thus measure vertical displacements for most of slab-on-girder and box-girder bridges. Besides, the approaches are feasible to implement for bridges under various loading. Moreover, with the advantages of FBG sensors, they can be implemented to monitor bridge behavior remotely and in real time. A beam loading test was conducted to determine vertical displacements using FBG strain sensors and tilt sensors. The discrepancies as compared with dial gauges reading using the curvature and inclination approaches are 0.14mm (1.1%) and 0.41mm (3.2%), respectively. Further recommendations of these approaches for developments will also be discussed at the end of the paper.
Resumo:
Since the architectural design studio learning environment was first established in the early 19th century at the École des Beaux-Arts in Paris, there has been a complete transformation in how the discipline of architecture is practiced and how students of architecture acquire information. Digital technologies allow students to access information instantly and learning is no longer confined to the rigid boundaries of a physical campus environment. In many schools of architecture in Australia, the physical design studio learning environments however, remain largely unchanged. Many learning environments could be mistaken for those last refurbished 30 years ago, being devoid of any significant technological intervention. While some teaching staff are eagerly embracing new digital technologies and attempting to modify their pedagogical approaches, the physical design studio learning environment is resistant to such efforts. In a study aimed at better understanding how staff and students adapt to new blended learning environments, a group of 165 second year architecture students at a large school of architecture in Australia were separated into two different design studio learning environments. 70% of students were allocated to a traditional design studio setting and 30% to a new, high technology embedded, prototype digital learning laboratory. The digital learning laboratory was purpose designed for the case-study users, adapted Student-Centred Active Learning Environment for Undergraduate Programs [SCALE-UP] principles, and built as part of a larger university research project. The architecture students attended the same lectures, followed the same studio curriculum and completed the same pieces of assessment; the only major differences were the teaching staff and physical environment within which the studios were conducted. At the end of the semester, all staff and students were asked to complete a questionnaire about their experiences and preferences within the two respective learning environments. The questionnaire response rate represented the opinions of 100% of the 10 teaching staff and over 70% of the students. Using a qualitative grounded theory approach, data were coded, extrapolated and compared, to reveal emerging key themes. The key themes formed the basis for in-depth interviews and focus groups of teaching staff and students, allowing the researchers to understand the data in more detail. The results of the data verified what had become increasingly evident during the course of the semester: an underlying negative resistance to the new digital studio learning environment, by both staff and students. Many participants openly exhibited a yearning for a return to the traditional design studio learning environments, particularly when the new technology caused frustration, by being unreliable or failing altogether. This paper reports on the study, discusses the negative resistance and explores the major contributors to resistance. The researchers are not aware of any similar previous studies across these particular settings and believe that it offers a necessary and important contribution to emergent research about adaptation to new digital learning environments.
Resumo:
YBa2Cu3O7-x wires have been extruded with 2 and 5 wt.% of hydroxy propyl methylcellulose (HPMC) as binder. Both sets of wires sintered below 930°C have equiaxed grains while the wires sintered above this temperature have elongated grains. In the temperature range which gives equiaxed grains, the wires extruded with 5 wt.% HPMC have higher grain size and density. Cracks along the grain boundaries are often observed in the wires having elongated grains. Critical current density, Jc, increases initially, reaches a peak and then decreases with the sintering temperature. The sintering temperature giving a peak in Jc strongly depends on the heat treatment scheme for the wires extruded with 5 wt.% HPMC. TEM studies show that defective layers are formed along grain boundaries for the wires extruded with 5 wt.% HPMC after 5 h oxygenation. After 55 h oxygenation, the defective layers become more localised and grain boundaries adopt an overall cleaner appearance. Densification with equiaxed grains and clean grain boundaries produces the highest Jc's for polycrystalline YBa2Cu3O7 wires.
Resumo:
An understanding of carbonaceous matter in primitive extraterrestrial materials is an essential component of studies on dust evolution in the interstellar medium and the early history of the Solar System. We have suggested previously that a record of graphitization is preserved in chondritic porous (CP) aggregates and carbonaceous chondrites1,2 and that the detailed mineralogy of CP aggregates can place boundary conditions on the nature of both physical and chemical processes which occurred at the time of their formation2,3. Here, we report further analytical electron microscope (AEM) studies on carbonaceous material in two CP aggregates which suggest that a record of hydrocarbon carbonization may also be preserved in these materials. This suggestion is, based upon the presence of well-ordered carbon-2H (lonsdaleite) in CP aggregates W7029*A and W7010*A2. This carbon is a metastable phase resulting from hydrous pyrolysis below 300-350°C and may be a precursor to poorly graphitized carbons (PGCs) in primitive extraterrestrial materials2. © 1987 Nature Publishing Group.
Resumo:
Debugging control software for Micro Aerial Vehicles (MAV) can be risky out of the simulator, especially with professional drones that might harm people around or result in a high bill after a crash. We have designed a framework that enables a software application to communicate with multiple MAVs from a single unified interface. In this way, visual controllers can be first tested on a low-cost harmless MAV and, after safety is guaranteed, they can be moved to the production MAV at no additional cost. The framework is based on a distributed architecture over a network. This allows multiple configurations, like drone swarms or parallel processing of drones' video streams. Live tests have been performed and the results show comparatively low additional communication delays, while adding new functionalities and flexibility. This implementation is open-source and can be downloaded from github.com/uavster/mavwork
Resumo:
Purpose: The effect of exercise on body mass is likely to be partially mediated through changes in appetite control. However, no studies have examined the effect of chronic exercise on obestatin and cholecystokinin (CCK) plasma concentrations or the sensitivity to detect differences in preload energy in obese individuals. The objective of this study was to investigate the effects of chronic exercise on 1) fasting and postprandial plasma concentrations of obestatin, CCK, leptin, and glucose insulinotropic peptide (GIP) and 2) the accuracy of energy compensation in response to covert preload manipulation. Methods: This study used a 12-wk supervised exercise program in 22 sedentary overweight/obese individuals. Fasting/postprandial plasma concentrations of obestatin, CCK, leptin, and GIP were assessed before and after the intervention. Energy compensation at a 30-min test meal after a high-energy (607 kcal) or a low-energy (246 kcal) preload and for the rest of the day (cumulative energy intake [EI]) was also measured. Results: There was a significant reduction in the plasma concentration of fasting plasma GIP and both fasting and postprandial leptin concentrations after the exercise intervention (P < 0.05 for all). No significant changes were observed for CCK or obestatin. A significant preload–exercise interaction (P = 0.011) was observed on cumulative EI and energy compensation for the same period (−87% ± 196% vs 68% ± 165%, P = 0.011). Weight loss (3.5 ± 1.4 kg, P < 0.0001) was not correlated with changes in energy compensation. Conclusions: This study suggests that exercise improves the accuracy of compensation for previous EI, independent of weight loss. Unexpectedly, and in contrast to GIP and leptin, exercise-induced weight loss had no effect on obestatin or CCK concentrations.
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. A selection of the resulting 165 heuristics are presented in this paper and discussed with respect to key evaluations of the GameFlow model.
Resumo:
The GameFlow model strives to be a general model of player enjoyment, applicable to all game genres and platforms. Derived from a general set of heuristics for creating enjoyable player experiences, the GameFlow model has been widely used in evaluating many types of games, as well as non-game applications. However, we recognize that more specific, low-level, and implementable criteria are potentially more useful for designing and evaluating video games. Consequently, the research reported in this paper aims to provide detailed heuristics for designing and evaluating one specific game genre, real-time strategy games. In order to develop these heuristics, we conducted a grounded theoretical analysis on a set of professional game reviews and structured the resulting heuristics using the GameFlow model. The resulting 165 heuristics for designing and evaluating real-time strategy games are presented and discussed in this paper.
Resumo:
On 3 February 2011, Cyclone Yasi struck the coast of North Queensland, causing widespread damage. The cyclone destroyed the small coastal town of Cardwell, about 165 kilometres north of Townsville, Queensland. This chapter serves as a case study of a collaborative outreach project mobilised in response to this disaster in North Queensland. A public history research team, consisting of practitioners from the Queensland University of Technology’s Creative Industries Faculty, with the support of the Oral History Association of Australia, Queensland branch, partnered with the Cardwell and District Historical Society to support the society to collect community narratives in the wake of Cyclone Yasi.
Resumo:
A routine activity for a sports dietitian is to estimate energy and nutrient intake from an athlete's self-reported food intake. Decisions made by the dietitian when coding a food record are a source of variability in the data. The aim of the present study was to determine the variability in estimation of the daily energy and key nutrient intakes of elite athletes, when experienced coders analyzed the same food record using the same database and software package. Seven-day food records from a dietary survey of athletes in the 1996 Australian Olympic team were randomly selected to provide 13 sets of records, each set representing the self-reported food intake of an endurance, team, weight restricted, and sprint/power athlete. Each set was coded by 3-5 members of Sports Dietitians Australia, making a total of 52 athletes, 53 dietitians, and 1456 athlete-days of data. We estimated within- and between- athlete and dietitian variances for each dietary nutrient using mixed modeling, and we combined the variances to express variability as a coefficient of variation (typical variation as a percent of the mean). Variability in the mean of 7-day estimates of a nutrient was 2- to 3-fold less than that of a single day. The variability contributed by the coder was less than the true athlete variability for a 1-day record but was of similar magnitude for a 7-day record. The most variable nutrients (e.g., vitamin C, vitamin A, cholesterol) had approximately 3-fold more variability than least variable nutrients (e.g., energy, carbohydrate, magnesium). These athlete and coder variabilities need to be taken into account in dietary assessment of athletes for counseling and research.