63 resultados para 1146
Resumo:
Background Diabetic foot ulcers (DFU) are a leading cause of diabetes-related hospitalisation and can be costly to manage without access to appropriate expert care. Within Queensland and indeed across many parts of Australia, there is an inequality in accessing specialist services for individuals with DFU. Recent National Health and Medical Research Council (NHMRC) diabetic foot guidelines recommend remote expert consultation with digital imaging should be made available to people with DFU to improve their clinical outcomes. Telemedicine appears to show promise in improving access to diabetic foot specialist services; however diabetic foot telemedicine models to date have relied upon videoconferencing, store and forward technology and/or customised appliances to obtain digital imagery which all require either expensive infrastructure or a timed reply to the request for advice. Whilst mobile phone advice services have been used with success in general diabetes management and telehealth services have improved diabetic foot outcomes, the rapid emergence in the use of mobile phones has established a need to review the role that various forms of telemedicine play in the management of DFU. The aim of this paper is to review traditional telemedicine modalities that have been used in the management of DFU and to compare that to new and innovative technology that are emerging. Process Studies investigating the management of DFU using various forms of telemedicine interventions will be included in this review. They include the use of videoconferencing technology, hand held digital still photography purpose built imaging devices and mobile phone imagery. Electronic databases (Pubmed, Medline and CINAHL) will be searched using broad MeSH terms and keywords that cover the intended area of interest. Findings It is anticipated that the results of this narrative review will provide delegates of the 2015 Australasian Podiatry Conference an insight into the types of emerging innovative diagnostic telemedicine technologies in the management of DFU against the backdrop of traditional and evidence based modalities. It is anticipated that the findings will drive further research in the area of mobile phone imagery and innovation in the management of DFU.
Resumo:
Background Diabetic foot disease (DFD) is the leading cause of hospitalisation and lower extremity amputation (LEA) in people with diabetes. Many studies have established the relationship between DFD and clinical risk factors, such as peripheral neuropathy and peripheral arterial disease. Other studies have identified the relationship between diabetes and non-clinical risk factors termed social determinants of health (SDoH), such as socioeconomic status. However, it appears very few studies have investigated the relationship between DFD and SDoH. This paper aims to review the existing literature investigating the relationship between DFD and the SDoH factors socioeconomic status (SES), race and geographical remoteness (remoteness). Process Electronic databases (MEDLINE, CINAHL, and PubMed) were searched for studies reporting SES, race (including Aboriginal and Torres Strait Islander in Australia) and remoteness and their relationship to DFD and LEA. Exclusion criteria were studies conducted in developing countries and studies published prior to 2000. Findings Forty-eight studies met the inclusion criteria and were reviewed; 10 in Australia. Overall, 28 (58%) studies investigated LEA, 10 (21%) DFD, and 10 (21%) DFD and LEA as the DFD-related outcome. Thirty-six (75%) studies investigated the SDoH risk factor of race, 22 (46%) SES, and 20 (42%) remoteness. SES, race and remoteness were found to be individually associated with LEA and DFD in the majority of studies. Only four studies investigated interactions between SES, race and remoteness and DFD with contrasting findings. All four studies used only LEA as their investigated outcome. No Australian studies investigate the interaction of all three SDoH risk factors on DFD outcomes. Conclusions The SDoH risk factors of SES, race and GR appear to be individually associated with DFD. However, only few studies investigated the interaction of these three major SDoH risk factors and DFD outcomes with contrasting results. There is a clear gap in this area of DFD research and particularly in Australia. Until urgent future research is performed, current practice and policy does not adequately take into consideration the implication of SDoH on DFD.
Resumo:
Volatility-hygroscopicity tandem differential mobility analyzer measurements were used to infer the composition of sub-100 nm diameter Southern Ocean marine aerosols at Cape Grim in November and December 2007. This study focuses on a short-lived high sea spray aerosol (SSA) event on 7–8 December with two externally mixed modes in the Hygroscopic Growth Factor (HGF) distributions (90% relative humidity (RH)), one at HGF > 2 and another at HGF~1.5. The particles with HGF > 2 displayed a deliquescent transition at 73–75% RH and were nonvolatile up to 280°C, which identified them as SSA particles with a large inorganic sea-salt fraction. SSA HGFs were 3–13% below those for pure sea-salt particles, indicating an organic volume fraction (OVF) of up to 11–46%. Observed high inorganic fractions in sub-100 nm SSA is contrary to similar, earlier studies. HGFs increased with decreasing particle diameter over the range 16–97 nm, suggesting a decreased OVF, again contrary to earlier studies. SSA comprised up to 69% of the sub-100 nm particle number, corresponding to concentrations of 110–290 cm−3. Air mass back trajectories indicate that SSA particles were produced 1500 km, 20–40 h upwind of Cape Grim. Transmission electron microscopy (TEM) and X-ray spectrometry measurements of sub-100 nm aerosols collected from the same location, and at the same time, displayed a distinct lack of sea salt. Results herein highlight the potential for biases in TEM analysis of the chemical composition of marine aerosols.