722 resultados para Stochastic modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fire resistance characteristic of LSF wall systems mainly depends on the protective linings in use, commonly gypsum plasterboards. However, unclassified boards with varying composition and more notably with ambiguous thermal properties are increasingly becoming available in the market. Therefore a study was undertaken with an aim to set minimum standards for fire protective boards used in LSF wall applications. This paper presents the details of this study based on material characterisation and finite element thermal modelling of the most commonly used fire protective board, gypsum plasterboards, to address these critical issues related to fire safety design. In the material characterisation phase of this study, thermal properties of three different gypsum plasterboards manufactured in Australia were measured, analysed and compared. Subsequently, it proposes a thermal property based “k-factor” capable of giving an overall measure of the fire performance of boards, so that it can be used in appropriately classifying fire protective boards. As it is not known how this factor relates to the overall fire performance of LSF wall systems, numerical models were also developed and used to simulate the performance of LSF walls exposed to the standard fire. Finally, a correlation between time-temperature profiles from numerical analyses and calculated k-factors was established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the Porous–Fisher model provides a better description of the experiments.