828 resultados para Human dissection
Resumo:
Cortical connectivity is associated with cognitive and behavioral traits that are thought to vary between sexes. Using high-angular resolution diffusion imaging at 4 Tesla, we scanned 234 young adult twins and siblings (mean age: 23.4 2.0 SD years) with 94 diffusion-encoding directions. We applied a novel Hough transform method to extract fiber tracts throughout the entire brain, based on fields of constant solid angle orientation distribution functions (ODFs). Cortical surfaces were generated from each subject's 3D T1-weighted structural MRI scan, and tracts were aligned to the anatomy. Network analysis revealed the proportions of fibers interconnecting 5 key subregions of the frontal cortex, including connections between hemispheres. We found significant sex differences (147 women/87 men) in the proportions of fibers connecting contralateral superior frontal cortices. Interhemispheric connectivity was greater in women, in line with long-standing theories of hemispheric specialization. These findings may be relevant for ongoing studies of the human connectome.
Resumo:
Human brain connectivity is disrupted in a wide range of disorders from Alzheimer's disease to autism but little is known about which specific genes affect it. Here we conducted a genome-wide association for connectivity matrices that capture information on the density of fiber connections between 70 brain regions. We scanned a large twin cohort (N=366) with 4-Tesla high angular resolution diffusion imaging (105-gradient HARDI). Using whole brain HARDI tractography, we extracted a relatively sparse 70×70 matrix representing fiber density between all pairs of cortical regions automatically labeled in co-registered anatomical scans. Additive genetic factors accounted for 1-58% of the variance in connectivity between 90 (of 122) tested nodes. We discovered genome-wide significant associations between variants and connectivity. GWAS permutations at various levels of heritability, and split-sample replication, validated our genetic findings. The resulting genes may offer new leads for mechanisms influencing aberrant connectivity and neurodegeneration. © 2012 IEEE.
Resumo:
Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, highangular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.
Resumo:
Our aim was to make a quantitative comparison of the response of the different visual cortical areas to selective stimulation of the two different cone-opponent pathways [long- and medium-wavelength (L/M)- and short-wavelength (S)-cone-opponent] and the achromatic pathway under equivalent conditions. The appropriate stimulus-contrast metric for the comparison of colour and achromatic sensitivity is unknown, however, and so a secondary aim was to investigate whether equivalent fMRI responses of each cortical area are predicted by stimulus contrast matched in multiples of detection threshold that approximately equates for visibility, or direct (cone) contrast matches in which psychophysical sensitivity is uncorrected. We found that the fMRI response across the two colour and achromatic pathways is not well predicted by threshold-scaled stimuli (perceptual visibility) but is better predicted by cone contrast, particularly for area V1. Our results show that the early visual areas (V1, V2, V3, VP and hV4) all have robust responses to colour. No area showed an overall colour preference, however, until anterior to V4 where we found a ventral occipital region that has a significant preference for chromatic stimuli, indicating a functional distinction from earlier areas. We found that all of these areas have a surprisingly strong response to S-cone stimuli, at least as great as the L/M response, suggesting a relative enhancement of the S-cone cortical signal. We also identified two areas (V3A and hMT+) with a significant preference for achromatic over chromatic stimuli, indicating a functional grouping into a dorsal pathway with a strong magnocellular input.
Resumo:
Pharmacological MRI (phMRI) techniques can be used to monitor the neurophysiological effects of central nervous system (CNS) active drugs. In this study, we investigated whether dynamic susceptibility contrast (DSC) perfusion imaging employing the use of superparamagnetic iron oxide nanoparticles (Resovist) could be used to measure hemodynamic response to d-amphetamine challenge in human subjects at both 1.5 and 4 T. Significant changes in cerebral blood flow (CBF) were found in focal regions associated with the nigrostriatal circuit and mesolimbic and mesocortical dopaminergic pathways. More significant CBF responses were found at higher field strength, mainly within striatal structures. The results from this study indicate that DSC perfusion imaging using Resovist can be used to assess the efficacy of CNS-active drugs and may play a role in the development of novel psychiatric therapies at the preclinical level. © 2005 Wiley-Liss, Inc.
Resumo:
Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease and is reduced in schizophrenia, major depression and mesial temporal lobe epilepsy. Whereas many brain imaging phenotypes are highly heritable, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10 -16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10 -12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10 -7).
Resumo:
An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required. The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.
Resumo:
In recent years, both developing and industrialised societies have experienced riots and civil unrest over the corporate exploitation of fresh water. Water conflicts increase as water scarcity rises and the unsustainable use of fresh water will continue to have profound implications for sustainable development and the realisation of human rights. Rather than states adopting more costly water conservation strategies or implementing efficient water technologies, corporations are exploiting natural resources in what has been described as the “privatization of water”. By using legal doctrines, states and corporations construct fresh water sources as something that can be owned or leased. For some regions, the privatization of water has enabled corporations and corrupt states to exploit a fundamental human right. Arguing that such matters are of relevance to criminology, which should be concerned with fundamental environmental and human rights, this article adopts a green criminological perspective and draws upon Treadmill of Production theory.
Resumo:
A 2400 year record of environmental change is reported from a wetland on Bentinck Island in the southern Gulf of Carpentaria, northern Australia. Three phases of wetland development are identified, with a protected coastal setting from ca. 2400 to 500 years ago, transitioning into an estuarine mangrove forest from ca. 500 years ago to the 1940s, and finally to a freshwater swamp over the past +60 years. This sequence reflects the influence of falling sea-levels, development of a coastal dune barrier system, prograding shorelines, and an extreme storm (cyclone) event. In addition, there is clear evidence of the impacts that human abandonment and resettlement have on the island's fire regimes and vegetation. A dramatic increase in burning and vegetation thickening was observed after the cessation of traditional Indigenous Kaiadilt fire management practices in the 1940s, and was then reversed when people returned to the island in the 1980s. In terms of the longer context for human occupation of the South Wellesley Archipelago, it is apparent that the mangrove phase provided a stable and productive environment that was conducive for human settlement of this region over the past 1000 years.
Resumo:
Although Human papillomavirus (HPV) is a common sexually transmitted infection, there is limited knowledge of HPV with ethnic/racial minorities experiencing the greatest disparities. This cross-sectional study used the most recent available data from the California Health Interview Survey to assess disparities in awareness and knowledge of HPV among ethnically/racially diverse women varying in generation status (N = 19,928). Generation status emerged as a significant predictor of HPV awareness across ethnic/racial groups, with 1st generation Asian-Americans and 1st and 2nd generation Latinas reporting the least awareness when compared to same-generation White counterparts. Also, generation status was a significant predictor of HPV knowledge, but only for Asian-Americans. Regardless of ethnicity/race, 1st generation women reported lowest HPV knowledge when compared to 2nd and 3rd generation women. These findings underscore the importance of looking at differences within and across ethnic/racial groups to identify subgroups at greatest risk for poor health outcomes. In particular, we found generation status to be an important yet often overlooked factor in the identification of health disparities.
Resumo:
Genome maintenance (GM) is an essential defense system against aging and cancer, as both are characterized by increased genome instability. Here, we compared the copy number variation and mutation rate of 518 GM-associated genes in the naked mole rat (NMR), mouse, and human genomes. GM genes appeared to be strongly conserved, with copy number variation in only four genes. Interestingly, we found NMR to have a higher copy number of CEBPG, a regulator of DNA repair, and TINF2, a protector of telomere integrity. NMR, as well as human, was also found to have a lower rate of germline nucleotide substitution than the mouse. Together, the data suggest that the long-lived NMR, as well as human, has more robust GM than mouse and identifies new targets for the analysis of the exceptional longevity of the NMR.
Resumo:
There are currently 23,500 level crossings in Australia, broadly divided active level crossings with flashing lights; and passive level crossings controlled by stop and give way signs. The current strategy is to annually upgrade passive level crossings with active controls within a given budget, but the 5,900 public passive crossings are too numerous to be upgraded all. The rail industry is considering alternative options to treat more crossings. One of them is to use lower cost equipment with reduced safety integrity level, but with a design that would fail to a safe state: in case of the impossibility for the system to know whether a train is approaching, the crossing changes to a passive crossing. This is implemented by having a STOP sign coming in front of the flashing lights. While such design is considered safe in terms of engineering design, questions remain on human factors. In order to evaluate whether such approach is safe, we conducted a driving simulator study where participants were familiarized with the new active crossing, before changing the signage to a passive crossing. Our results show that drivers treated the new crossing as an active crossing after the novelty effect had passed. While most participants did not experience difficulties with the crossing being turned back to a passive crossing, a number of participants experienced difficulties stopping in time at the first encounter of such passive crossing. Worse, a number of drivers never realized the signage had changed, highlighting the link between the decision to brake and stop at an active crossing to the lights flashing. Such results show the potential human factor issues of changing an active crossing to a passive crossing in case of failure of the detection of the train.
Resumo:
When working with the world’s most vulnerable populations there are questions surrounding the salience of physical activity promotion programs given the multitude of basic needs that must first be met. Indeed, physical activity may be a low priority for individuals seeking safety, reunification with loved ones, and food for their families, as a subsistence lifestyle makes excess weight gain, diabetes, and cardiovascular disease irrelevant. Yet, when working with people from a refugee background for whom these challenges all too frequently apply, opportunities for sport and activity have repeatedly surfaced as desirable and needed, yet are utterly deficient. If we conceptualize physical activity purely as a chronic disease prevention tool, its significance within under-resourced communities is most assuredly lost; however, if we harness the power of physical activity to serve as an agent of positive social change, then it instantly becomes more meaningful and necessary.
Resumo:
The Intergovernmental Panel on Climate Change (IPCC) has published its latest report upon the impacts of global warming, highlighting the pernicious impact of climate change upon public health, well-being, and even the survival of the human race.
Resumo:
The human genome project was a grand scientific enterprise which attracted both hyperbole and ridicule alike. The project was lauded as “the moon shot of the life sciences”, the “holy grail of man”, “the code of codes”, and “the book of life”. Such rhetoric has also received scorn. President George Bush senior managed to deflate the pretensions of the project with the accidental slip that it was the “human gnome initiative”. In The Sequence, Kevin Davies seeks to go beyond such metaphors, and provide a candid and honest account of the race of the human genome project. The author is indebted to the authoritative book The Gene Wars, which considered the early struggles over the human genome project. Robert Cook-Deegan observes that there was initially much debate over whether there should be a Human Genome Project at all: The debate became one of “big” science versus “small” science. The reliance on systematic technology development and goal-directed gene-mapping efforts presaged a new style for biology, one that elicited excitement from those attracted to whiz-bang technologies but drew gasps of revulsion from those who aspired to cultivate biology on a more modest scale and with decentralized organisation. The battle was, among other things, over whose vision would control the budget and which scientific aesthetic would prevail.