778 resultados para Numerical Evaluation
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.
Resumo:
Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.
Resumo:
Aim Evaluation or assessment of competence is an important step to ensure the safety and efficacy of health professionals, including dietitians. Most competency-based assessment studies are focussed on valid and reliable methods of assessment for the preparation of entry-level dietitians, few papers have explored student dietitians’ perceptions of these evaluations. This study aimed to explore the perceptions of recent graduates from accredited nutrition and dietetics training programs in Australia. It also aimed to establish the relevance of competency-based assessment to adequately prepare them for entry-level work roles. Methods A purposive sample of newly-graduated dietitians with a range of assessment experiences and varied employment areas was recruited. A qualitative approach, using in-depth interviews with 13 graduates, with differing assessment experiences was undertaken. Graduates were asked to reflect upon their competency-based assessment experiences whilst a student. Data was thematically analysed by multiple authors. Results Four themes emerged from the data analysis: (i) Transparency and consistency are critical elements of work-based competency assessment. (ii) Students are willing to take greater responsibility in their assessment process. (iii) Work-based competency assessment prepares students for employment. (iv) The relationship between students and their assessors can impact on the student experience and their assessment performance. Conclusions Understanding this unique perspective of students can improve evaluation of future health professionals and assist in designing valid competency-based assessment approaches.
Acceptability-based QoE management for user-centric mobile video delivery : a field study evaluation
Resumo:
Effective Quality of Experience (QoE) management for mobile video delivery – to optimize overall user experience while adapting to heterogeneous use contexts – is still a big challenge to date. This paper proposes a mobile video delivery system to emphasize the use of acceptability as the main indicator of QoE to manage the end-to-end factors in delivering mobile video services. The first contribution is a novel framework for user-centric mobile video system that is based on acceptability-based QoE (A-QoE) prediction models, which were derived from comprehensive subjective studies. The second contribution is results from a field study that evaluates the user experience of the proposed system during realistic usage circumstances, addressing the impacts of perceived video quality, loading speed, interest in content, viewing locations, network bandwidth, display devices, and different video coding approaches, including region-of-interest (ROI) enhancement and center zooming
Resumo:
This thesis developed a high preforming alternative numerical technique to investigate microscale morphological changes of plant food materials during drying. The technique is based on a novel meshfree method, and is more capable of modeling large deformations of multiphase problem domains, when compared with conventional grid-based numerical modeling techniques. The developed cellular model can effectively replicate dried tissue morphological changes such as shrinkage and cell wall wrinkling, as influenced by moisture reduction and turgor loss.
Resumo:
2014 is the year for embedding the Reframe: QUT’s Evaluation Framework as core business within the University, with the following providing an outline of the Learning and Teaching Unit’s (LTU) planned activities to support this implementation. LTU is continuing its commitment to intensive support and engagement with the academic and teaching focused community within QUT. The Academic Quality and Standards team have extended the existing communication and dissemination activities into a comprehensive communication plan for 2014, with major initiatives defined within this document. It should be noted that these activities are aligned to the discussions from the 2013 Integrated Management of Feedback (IMF) Steering Group and as endorsed by the University Learning and Teaching Committee at their meeting in February, 2014.