761 resultados para Urban anthropology. Ethnography. Movement Okupa
Resumo:
- Objective To investigate if parental disapproval of alcohol use accounts for differences in adolescent alcohol use across regional and urban communities. - Design Secondary data analysis of grade-level stratified data from a random sample of schools. - Setting High schools in Victoria, Australia. - Participants A random sample of 10273 adolescents from Grade 7 (mean age=12.51 years), 9 (14.46 years) and 11 (16.42 years). - Main outcome measures The key independent variables were parental disapproval of adolescent alcohol use and regionality (regional/ urban), and the dependent variable was past 30 days alcohol use. - Results After adjusting for potential confounders, adolescents in regional areas were more likely to use alcohol in the past 30 days (OR=1.83, 1.44 and 1.37 for Grades 7, 9 and 11, respectively, P<0.05), and their parents have a lower level of disapproval of their alcohol use (b=-0.12, -0.15 and -0.19 for Grades 7, 9 and 11, respectively, P<0.001). Bootstrapping analyses suggested that 8.37%, 23.30% and 39.22% of the effect of regionality on adolescent alcohol use was mediated by parental disapproval of alcohol use for Grades 7, 9 and 11 participants respectively (P<0.05). - Conclusions Adolescents in urban areas had a lower risk of alcohol use compared with their regional counterparts, and differences in parental disapproval of alcohol use contributed to this difference.
Resumo:
Background Despite the burden of acute respiratory illnesses (ARI) among Aboriginal and Torres Strait Islander children being a substantial cause of childhood morbidity and associated costs to families, communities and the health system, data on disease burden in urban children are lacking. Consequently evidence-based decision-making, data management guidelines, health resourcing for primary health care services and prevention strategies are lacking. This study aims to comprehensively describe the epidemiology, impact and outcomes of ARI in urban Aboriginal and Torres Strait Islander children (hereafter referred to as Indigenous) in the greater Brisbane area. Methods/design A prospective cohort study of Indigenous children aged less than five years registered with a primary health care service in Northern Brisbane, Queensland, Australia. Children are recruited at time of presentation to the service for any reason. Demographic, epidemiological, risk factor, microbiological, economic and clinical data are collected at enrolment. Enrolled children are followed for 12 months during which time ARI events, changes in child characteristics over time and monthly nasal swabs are collected. Children who develop an ARI with cough as a symptom during the study period are more intensely followed-up for 28(±3) days including weekly nasal swabs and parent completed cough diary cards. Children with persistent cough at day 28 post-ARI are reviewed by a paediatrician. Discussion Our study will be one of the first to comprehensively evaluate the natural history, epidemiology, aetiology, economic impact and outcomes of ARIs in this population. The results will inform studies for the development of evidence-based guidelines to improve the early detection, prevention and management of chronic cough and setting of priorities in children during and after ARI.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
The future of civic engagement is characterised by both technological innovation as well as new technological user practices that are fuelled by trends towards mobile, personal devices; broadband connectivity; open data; urban interfaces; and, cloud computing. These technology trends are progressing at a rapid pace, and have led global technology vendors to package and sell the ‘Smart City’ as a centralized service delivery platform predicted to optimize and enhance cities’ key performance indicators – and generate a profitable market. The top-down deployment of these large and proprietary technology platforms have helped sectors such as energy, transport, and healthcare to increase efficiencies. However, an increasing number of scholars and commentators warn of another ‘IT bubble’ emerging. Along with some city leaders, they argue that the top-down approach does not fit the governance dynamics and values of a liberal democracy when applied across sectors. A thorough understanding is required, of the socio-cultural nuances of how people work, live, play across different environments, and how they employ social media and mobile devices to interact with, engage in, and constitute public realms. Although the term ‘slacktivism’ is sometimes used to denote a watered down version of civic engagement and activism that is reduced to clicking a ‘Like’ button and signing online petitions, we believe that we are far from witnessing another Biedermeier period that saw people focus on the domestic and the non-political. There is plenty of evidence to the contrary, such as post-election violence in Kenya in 2008, the Occupy movements in New York, Hong Kong and elsewhere, the Arab Spring, Stuttgart 21, Fukushima, the Taksim Gezi Park in Istanbul, and the Vinegar Movement in Brazil in 2013. These examples of civic action shape the dynamics of governments, and in turn, call for new processes to be incorporated into governance structures. Participatory research into these new processes across the triad of people, place and technology is a significant and timely investment to foster productive, sustainable, and livable human habitats. With this chapter, we want to reframe the current debates in academia and priorities in industry and government to allow citizens and civic actors to take their rightful centerpiece place in civic movements. This calls for new participatory approaches for co-inquiry and co-design. It is an evolving process with an explicit agenda to facilitate change, and we propose participatory action research (PAR) as an indispensable component in the journey to develop new governance infrastructures and practices for civic engagement. This chapter proposes participatory action research as a useful and fitting research paradigm to guide methodological considerations surrounding the study, design, development, and evaluation of civic technologies. We do not limit our definition of civic technologies to tools specifically designed to simply enhance government and governance, such as renewing your car registration online or casting your vote electronically on election day. Rather, we are interested in civic media and technologies that foster citizen engagement in the widest sense, and particularly the participatory design of such civic technologies that strive to involve citizens in political debate and action as well as question conventional approaches to political issues (DiSalvo, 2012; Dourish, 2010; Foth et al., 2013). Following an outline of some underlying principles and assumptions behind participatory action research, especially as it applies to cities, we will critically review case studies to illustrate the application of this approach with a view to engender robust, inclusive, and dynamic societies built on the principles of engaged liberal democracy. The rationale for this approach is an alternative to smart cities in a ‘perpetual tomorrow,’ (cf. e.g. Dourish & Bell, 2011), based on many weak and strong signals of civic actions revolving around technology seen today. It seeks to emphasize and direct attention to active citizenry over passive consumerism, human actors over human factors, culture over infrastructure, and prosperity over efficiency. First, we will have a look at some fundamental issues arising from applying simplistic smart city visions to the kind of a problem a city is (cf. Jacobs, 1961). We focus on the touch points between “the city” and its civic body, the citizens. In order to provide for meaningful civic engagement, the city must provide appropriate interfaces.
Resumo:
This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.
Resumo:
Variability in the pollutant wash-off process is a concept which needs to be understood in-depth in order to better assess the outcomes of stormwater quality models, and thereby strengthen stormwater pollution mitigation strategies. Current knowledge about the wash-off process does not extend to a clear understanding of the influence of the initially available pollutant build-up on the variability of the pollutant wash-off load and composition. Consequently, pollutant wash-off process variability is poorly characterised in stormwater quality models, which can result in inaccurate stormwater quality predictions. Mathematical simulation of particulate wash-off from three urban road surfaces confirmed that the wash-off load of particle size fractions <150µm and >150µm after a storm event vary with the build-up of the respective particle size fractions available at the beginning of the storm event. Furthermore, pollutant load and composition associated with the initially available build-up of <150µm particles predominantly influence the variability in washed-off pollutant load and composition. The influence of the build-up of pollutants associated with >150µm particles on wash-off process variability is significant only for relatively shorter duration storm events.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
Exposure to atmospheric ultrafine particles (UFPs, D<100 nm) has been an increasingly concern because of their potential impact one health. Motor vehicle emissions are considered as one of the major source of UFPin urban airshed, as the combustion of both petrol and diesel engine leads to emission of particles which are predominantly in this size range (Ban-Weiss et al, 2010; Morawska et al, 2008). New particle formations (NPFs) and major facilities such as airport or seaport has also been identified as major sources of UFPs in urban airshed (Cheung et al, 2010; González et al, 2011; Mazaheri et al, 2013). However, contribution of those urban sources to ambient UFP concentrations has not been comprehensively characterized.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
Aboriginal and Torres Strait Islander people experience higher levels of psychological distress and mental ill health than their non-Indigenous counterparts, but underuse mental health services. Interventions are required to address the structural and functional access barriers that cause this underuse. In 2012, the Southern Queensland Centre of Excellence in Aboriginal and Torres Strait Islander Primary Health Care employed a psychologist and a social worker to integrate mental health care into its primary health care services. This research study examines the impact of this innovation.
Resumo:
Introduction & Aims Optimising fracture treatments requires a sound understanding of relationships between stability, callus development and healing outcomes. This has been the goal of computational modelling, but discrepancies remain between simulations and experimental results. We compared healing patterns vs fixation stiffness between a novel computational callus growth model and corresponding experimental data. Hypothesis We hypothesised that callus growth is stimulated by diffusible signals, whose production is in turn regulated by mechanical conditions at the fracture site. We proposed that introducing this scheme into computational models would better replicate the observed tissue patterns and the inverse relationship between callus size and fixation stiffness. Method Finite element models of bone healing under stiff and flexible fixation were constructed, based on the parameters of a parallel rat femoral osteotomy study. An iterative procedure was implemented, to simulate the development of callus and its mechanical regulation. Tissue changes were regulated according to published mechano-biological criteria. Predictions of healing patterns were compared between standard models, with a pre-defined domain for callus development, and a novel approach, in which periosteal callus growth is driven by a diffusible signal. Production of this signal was driven by local mechanical conditions. Finally, each model’s predictions were compared to the corresponding histological data. Results Models in which healing progressed within a prescribed callus domain predicted that greater interfragmentary movements would displace early periosteal bone formation further from the fracture. This results from artificially large distortional strains predicted near the fracture edge. While experiments showed increased hard callus size under flexible fixation, this was not reflected in the standard models. Allowing the callus to grow from a thin soft tissue layer, in response to a mechanically stimulated diffusible signal, results in a callus shape and tissue distribution closer to those observed histologically. Importantly, the callus volume increased with increasing interfragmentary movement. Conclusions A novel method to incorporate callus growth into computational models of fracture healing allowed us to successfully capture the relationship between callus size and fixation stability observed in our rat experiments. This approach expands our toolkit for understanding the influence of different fixation strategies on healing outcomes.
Resumo:
Background The improved treatment protocols and subsequent improved survival rates amongst childhood cancer patients has shifted the focus towards the long-term consequences arising from cancer treatment. Children who have completed cancer treatment are at a greater risk of delayed development, diminished functioning, disability, compromised fundamental movement skill (FMS) attainment and long term chronic health conditions. The aim of the study was to compare FMS of childhood cancer patients with an aged matched healthy reference group. Methods Pediatric cancer patients aged 5-8 years of age (n=26; median age 6.91 years), who completed cancer treatment (<5 years) at the Sydney Children’s Hospital were assessed performing 7 key FMS; sprint, side-gallop, vertical-jump, catch, over-arm throw, kick and leap. Results were compared to the reference group (n=430; 6.56 years). Results Childhood cancer patients scored significantly lower on 3 out of 7 FMS tests when compared to the reference group. These results equated to a significantly lower overall score for FMS. Conclusion This study highlighted the significant deficits in FMS within pediatric patients having completed cancer treatment. In order to reduce the occurrence of significant FMS deficits in this population, FMS interventions maybe warranted to assist in recovery from childhood cancer, prevent late effects and improve the quality of life in survivors of childhood cancer.