733 resultados para RIGHT-CENSORED DATA
Resumo:
This paper firstly presents the benefits and critical challenges on the use of Bluetooth and Wi-Fi for crowd data collection and monitoring. The major challenges include antenna characteristics, environment’s complexity and scanning features. Wi-Fi and Bluetooth are compared in this paper in terms of architecture, discovery time, popularity of use and signal strength. Type of antennas used and the environment’s complexity such as trees for outdoor and partitions for indoor spaces highly affect the scanning range. The aforementioned challenges are empirically evaluated by “real” experiments using Bluetooth and Wi-Fi Scanners. The issues related to the antenna characteristics are also highlighted by experimenting with different antenna types. Novel scanning approaches including Overlapped Zones and Single Point Multi-Range detection methods will be then presented and verified by real-world tests. These novel techniques will be applied for location identification of the MAC IDs captured that can extract more information about people movement dynamics.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
Purpose This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve. Results None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
Assurance of learning (AOL) is a quality enhancement and quality assurance process used in higher education. It involves a process of determining programme learning outcomes and standards, and systematically gathering evidence to measure students' performance on these. The systematic assessment of whole-of-programme outcomes provides a basis for curriculum development and management, continuous improvement, and accreditation. To better understand how AOL processes operate, a national study of university practices across one discipline area, business and management, was undertaken. To solicit data on AOL practice, interviews were undertaken with a sample of business school representatives (n = 25). Two key processes emerged: (1) mapping of graduate attributes and (2) collection of assurance data. External drivers such as professional accreditation and government legislation were the primary reasons for undertaking AOL outcomes but intrinsic motivators in relation to continuous improvement were also evident. The facilitation of academic commitment was achieved through an embedded approach to AOL by the majority of universities in the study. A sustainable and inclusive process of AOL was seen to support wider stakeholder engagement in the development of higher education learning outcomes.
Resumo:
Mortality following hip arthroplasty is affected by a large number of confounding variables each of which must be considered to enable valid interpretation. Relevant variables available from the 2011 NJR data set were included in the Cox model. Mortality rates in hip arthroplasty patients were lower than in the age-matched population across all hip types. Age at surgery, ASA grade, diagnosis, gender, provider type, hip type and lead surgeon grade all had a significant effect on mortality. Schemper's statistic showed that only 18.98% of the variation in mortality was explained by the variables available in the NJR data set. It is inappropriate to use NJR data to study an outcome affected by a multitude of confounding variables when these cannot be adequately accounted for in the available data set.
Resumo:
One cannot help but be impressed by the inroads that digital oilfield technologies have made into the exploration and production (E&P) industry in the past decade. Today’s production systems can be monitored by “smart” sensors that allow engineers to observe almost any aspect of performance in real time. Our understanding of how reservoirs are behaving has improved considerably since the dawn of this revolution, and the industry has been able to move away from point answers to more holistic “big picture” integrated solutions. Indeed, the industry has already reaped the rewards of many of these kinds of investments. Many billions of dollars of value have been delivered by this heightened awareness of what is going on within our assets and the world around them (Van Den Berg et al. 2010).
Resumo:
In Smit v Chan [2001] QSC 493 (Supreme Court of Queensland, S1233 of 1995, Mullins J, 21.12.2001) the sixth defendant successfully obtained an order that a complex medical negligence action be tried without a jury. This was the first application to be decided under r474 of UCPR 1999, and the decision is a significant precedent for defendants in similar cases who want to avoid the unpredictability of outcome and the inflated damages awards sometimes associated with jury trials.
Resumo:
Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.
Resumo:
Traffic state estimation in an urban road network remains a challenge for traffic models and the question of how such a network performs remains a difficult one to answer for traffic operators. Lack of detailed traffic information has long restricted research in this area. The introduction of Bluetooth into the automotive world presented an alternative that has now developed to a stage where large-scale test-beds are becoming available, for traffic monitoring and model validation purposes. But how much confidence should we have in such data? This paper aims to give an overview of the usage of Bluetooth, primarily for the city-scale management of urban transport networks, and to encourage researchers and practitioners to take a more cautious look at what is currently understood as a mature technology for monitoring travellers in urban environments. We argue that the full value of this technology is yet to be realised, for the analytical accuracies peculiar to the data have still to be adequately resolved.
Resumo:
A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia. Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore, three geographical areas with unique environmental characteristics could be identified.
Resumo:
Combining human-computer interaction and urban informatics, this design research developed and tested novel interfaces offering users real-time feedback on their paper and energy consumption. Findings from deploying these interfaces in both domestic and office environments in Australia, the UK, and Ireland, will innovate future generations of resource monitoring technologies. The study draws conclusions with implications for government policy, the energy industry, and sustainability researchers.
Resumo:
A commitment in 2010 by the Australian Federal Government to spend $466.7 million dollars on the implementation of personally controlled electronic health records (PCEHR) heralded a shift to a more effective and safer patient centric eHealth system. However, deployment of the PCEHR has met with much criticism, emphasised by poor adoption rates over the first 12 months of operation. An indifferent response by the public and healthcare providers largely sceptical of its utility and safety speaks to the complex sociotechnical drivers and obstacles inherent in the embedding of large (national) scale eHealth projects. With government efforts to inflate consumer and practitioner engagement numbers giving rise to further consumer disillusionment, broader utilitarian opportunities available with the PCEHR are at risk. This paper discusses the implications of establishing the PCEHR as the cornerstone of a holistic eHealth strategy for the aggregation of longitudinal patient information. A viewpoint is offered that the real value in patient data lies not just in the collection of data but in the integration of this information into clinical processes within the framework of a commoditised data-driven approach. Consideration is given to the eHealth-as-a-Service (eHaaS) construct as a disruptive next step for co-ordinated individualised healthcare in the Australian context.