729 resultados para Damage Evaluation
Resumo:
One quarter of Australian children are overweight or obese (ABS, 2010), putting them at increased risk of physical and psychological health problems (Reilly et al., 2003). Overweight and obesity in childhood tends to persist into adulthood and is associated with premature death and morbidity (Reilly & Kelly, 2011). Increases in Australian children’s weight have coincided with declines in active transportation, such as walking, to school (Salmon et al., 2005). To address this problem, the Victorian Health Promotion Foundation (VicHealth), which is an independent statutory authority which advises government and contributes to promoting good health in Victoria (VicHealth, 2014), developed the Walk to School program. Walk to School aims to encourage primary school children in Victoria to walk to and from school more often. Walking to school is a low cost and effective means of reducing excess weight (Rosenberg et al., 2006) that can be easily integrated into daily routine (Brophy et al., 2011). The purpose of this paper is to present the results of the stakeholder process evaluation of Walk to School 2013, which forms part of a broader outcome evaluation that is currently in field. Although there is an emphasis on outcome evaluation of programs, process evaluation can be equally important in determining program success (Saunders et al., 2005). Further, process evaluation to assess program delivery and utilization is explicitly recommended by two social marketing frameworks (see Lefebvre et al., 1988; Walsh et al., 1993).
Resumo:
Any government deciding to invoke widespread change in its higher education sector through implementation of new policies impacts on every institution and all staff and students, often in both the time taken up and the heightened emotions caused. The central phenomenon that this study addresses is the process and consequences of policy changes in higher education in Australia. The aim of this article is to record the research design through the perspective (evaluation research), theoretical framework (program evaluation) and methods (content analysis, descriptive statistical analysis and bibliometric analysis) applied to the investigation of the 2003 federal government higher education reform package. This approach allows both the intended and unintended consequences arising from the policy implementation of three national initiatives focused on learning and teaching in higher education in Australia to surface. As a result, this program evaluation, also known in some disciplines as policy implementation analysis, will demonstrate the applicability of illuminative evaluation as a methodology and reinforce how program evaluation will assist and advise future government reform and policy implementation, and will serve as a legacy for future evaluative research.Any government deciding to invoke widespread change in its higher education sector through implementation of new policies impacts on every institution and all staff and students, often in both the time taken up and the heightened emotions caused. The central phenomenon that this study addresses is the process and consequences of policy changes in higher education in Australia. The aim of this article is to record the research design through the perspective (evaluation research), theoretical framework (program evaluation) and methods (content analysis, descriptive statistical analysis and bibliometric analysis) applied to the investigation of the 2003 federal government higher education reform package. This approach allows both the intended and unintended consequences arising from the policy implementation of three national initiatives focused on learning and teaching in higher education in Australia to surface. As a result, this program evaluation, also known in some disciplines as policy implementation analysis, will demonstrate the applicability of illuminative evaluation as a methodology and reinforce how program evaluation will assist and advise future government reform and policy implementation, and will serve as a legacy for future evaluative research.
Resumo:
Moose populations are managed for sustainable yield balanced against costs caused by damage to forestry or agriculture and collisions with vehicles. Optimal harvests can be calculated based on a structured population model driven by data on abundance and the composition of bulls, cows, and calves obtained by aerial-survey monitoring during winter. Quotas are established by the respective government agency and licenses are issued to hunters to harvest an animal of specified age or sex during the following autumn. Because the cost of aerial monitoring is high, we use a Management Strategy Evaluation to evaluate the costs and benefits of periodic aerial surveys in the context of moose management. Our on-the-fly "seat of your pants" alternative to independent monitoring is management based solely on the kill of moose by hunters, which is usually sufficient to alert the manager to declines in moose abundance that warrant adjustments to harvest strategies. Harvests are relatively cheap to monitor; therefore, data can be obtained each year facilitating annual adjustments to quotas. Other sources of "cheap" monitoring data such as records of the number of moose seen by hunters while hunting also might be obtained, and may provide further useful insight into population abundance, structure and health. Because conservation dollars are usually limited, the high cost of aerial surveys is difficult to justify when alternative methods exist. © 2012 Elsevier Inc.
Resumo:
There is a concern that high densities of elephants in southern Africa could lead to the overall reduction of other forms of biodiversity. We present a grid-based model of elephant-savanna dynamics, which differs from previous elephant-vegetation models by accounting for woody plant demographics, tree-grass interactions, stochastic environmental variables (fire and rainfall), and spatial contagion of fire and tree recruitment. The model projects changes in height structure and spatial pattern of trees over periods of centuries. The vegetation component of the model produces long-term tree-grass coexistence, and the emergent fire frequencies match those reported for southern African savannas. Including elephants in the savanna model had the expected effect of reducing woody plant cover, mainly via increased adult tree mortality, although at an elephant density of 1.0 elephant/km2, woody plants still persisted for over a century. We tested three different scenarios in addition to our default assumptions. (1) Reducing mortality of adult trees after elephant use, mimicking a more browsing-tolerant tree species, mitigated the detrimental effect of elephants on the woody population. (2) Coupling germination success (increased seedling recruitment) to elephant browsing further increased tree persistence, and (3) a faster growing woody component allowed some woody plant persistence for at least a century at a density of 3 elephants/km2. Quantitative models of the kind presented here provide a valuable tool for exploring the consequences of management decisions involving the manipulation of elephant population densities. © 2005 by the Ecological Society of America.
Resumo:
IgA is an important mucosal antibody that can neutralize mucosal pathogens by either preventing attachment to epithelia (immune exclusion) or alternatively inhibit intraepithelial replication following transcytosis by the polymeric immunoglobulin receptor (pIgR). Chlamydia trachomatis is a major human pathogen that initially targets the endocervical or urethral epithelium in women and men, respectively. As both tissues contain abundant SIgA we assessed the protection afforded by IgA targeting different chlamydial antigens expressed during the extra and intraepithelial stages of infection. We developed an in vitro model utilizing polarizing cells expressing the murine pIgR together with antigen-specific mouse IgA, and an in vivo model utilizing pIgR-/- mice. SIgA targeting the extraepithelial chlamydial antigen, the major outer membrane protein (MOMP), significantly reduced infection in vitro by 24 % and in vivo by 44 %. Conversely, pIgR-mediated delivery of IgA targeting the intraepithelial inclusion membrane protein A (IncA) bound to the inclusion but did not reduce infection in vitro or in vivo. Similarly, intraepithelial IgA targeting the secreted protease Chlamydia protease-like activity factor (CPAF) also failed to reduce infection. Together, these data suggest the importance of pIgR-mediated delivery of IgA targeting extra but not intraepithelial chlamydial antigens for protection against a genital tract infection.
Resumo:
In this paper, dynamic modeling and simulation of the hydropurification reactor in a purified terephthalic acid production plant has been investigated by gray-box technique to evaluate the catalytic activity of palladium supported on carbon (0.5 wt.% Pd/C) catalyst. The reaction kinetics and catalyst deactivation trend have been modeled by employing artificial neural network (ANN). The network output has been incorporated with the reactor first principle model (FPM). The simulation results reveal that the gray-box model (FPM and ANN) is about 32 percent more accurate than FPM. The model demonstrates that the catalyst is deactivated after eleven months. Moreover, the catalyst lifetime decreases about two and half months in case of 7 percent increase of reactor feed flowrate. It is predicted that 10 percent enhancement of hydrogen flowrate promotes catalyst lifetime at the amount of one month. Additionally, the enhancement of 4-carboxybenzaldehyde concentration in the reactor feed improves CO and benzoic acid synthesis. CO is a poison to the catalyst, and benzoic acid might affect the product quality. The model can be applied into actual working plants to analyze the Pd/C catalyst efficient functioning and the catalytic reactor performance.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb compared to socket-suspended prostheses. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. Clearly, the current momentum experienced worldwide is creating a need for a standardized evaluation framework to assess the benefits and safety of each procedure.
Resumo:
An outbreak detection and response system, using time series moving percentile method based on historical data, in China has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012, this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated that the system was a useful decision tool for dengue fever control and risk-management programs in China.
Resumo:
Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.
Resumo:
Health care services are typically consumed out of necessity, typically to recover from illness. While the consumption of health care services can be emotional given that consumers experience fear, hope, relief, and joy, surprisingly, there is little research on the role of consumer affect in health care consumption. We propose that consumer affect is a heuristic cue that drives evaluation of health care services. Drawing from cognitive appraisal theory and affect-as-information theory, this article tests a research model (N = 492) that investigates consumer affect resulting from service performance on subsequent service outcomes.
Resumo:
This paper presents a feasibility study on structural damage alarming and localization of long-span cable-supported bridges using multi-novelty indices formulated by monitoring-derived modal parameters. The proposed method which requires neither structural model nor damage model is applicable to structures of arbitrary complexity. With the intention to enhance the tolerance to measurement noise/uncertainty and the sensitivity to structural damage, an improved novelty index is formulated in terms of auto-associative neural networks (ANNs) where the output vector is designated to differ from the input vector while the training of the ANNs needs only the measured modal properties of the intact structure under in-service conditions. After validating the enhanced capability of the improved novelty index for structural damage alarming over the commonly configured novelty index, the performance of the improved novelty index for damage occurrence detection of large-scale bridges is examined through numerical simulation studies of the suspension Tsing Ma Bridge (TMB) and the cable-stayed Ting Kau Bridge (TKB) incurred with different types of structural damage. Then the improved novelty index is extended to formulate multi-novelty indices in terms of the measured modal frequencies and incomplete modeshape components for damage region identification. The capability of the formulated multi-novelty indices for damage region identification is also examined through numerical simulations of the TMB and TKB.
Resumo:
This research quantifies traffic congestion and travel time reliability with case study on a major arterial road in Brisbane. The focus is on the analysis of impact of incidents (e.g., road accidents) on travel time reliability. Real traffic (Bluetooth) and incident records from Coronation Drive, Brisbane are utilized for the study. The findings include significant impact of incidents on traffic congestion and travel time reliability. The knowledge gained is useful in various applications such as traveler information systems, and cost-benefit analysis of various strategies to reduce the traffic incidents and its' impacts.
Resumo:
The Queensland Department of Transport and Main Roads (TMR) required an evaluation framework for the Queensland Alcohol Ignition Interlock Program (AIIP). The objective of this project was to develop a framework to evaluate the AIIP in terms of its effect on road safety outcomes.
Resumo:
In response to the Travelsafe Committee Report No. 51 – report on the inquiry into Automatic Plate Recognition Technology – it was recommended that the Queensland Police Service continue to trial the deployment of ANPR technology for traffic enforcement work and to evaluate the road safety impacts and operational effectiveness of the technology. As such, the purpose of this report is to provide an independent evaluation of a trial of ANPR that was conducted by a project team within the State Traffic Support Branch of the Queensland Police Service (QPS) and provide recommendations as to the applicability and usability of the technology for use throughout Queensland...