773 resultados para time perception
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
Construction delay has been a protracted problem for the Malaysian construction industry. Recent report showed that 80% of public sector projects are behind schedule. This underachieving time performance has led to many problems including public complaints, loss of reputation and revenue for the government and a slump in the industry’s GDP contribution. Research in the area of project delay has mushroomed worldwide with attempts to place mitigation plans, but delay remains a global phenomenon. There is now an urgent need for revolutionizing construction practices and past research, backed up with few successful cases suggests that Supply Chain Management (SCM) could prove beneficial to reduce or eliminate delays in construction. SCM which originated from the automotive manufacturing industry promotes a more collaborative approach to construction management and has recently gained attention of the construction industry. However every country, including Malaysia, would certainly have disparities of their own compared to others being it from the cultural point of view, nature of problems, locality or improvements needed. Therefore, this paper will present part of a Ph.D. research which aims at illustrating the Malaysian construction industry experts’ perception of the Malaysian public sector project delay, provide insight into these dilemmas, highlights the problems with current practices, its effects and the improvements needed. Subsequently, this paper would propose ratification to the problems using SCM. A semi-structured interview has been conducted to practitioners with at least 20 years’ experience in the industry. The findings showed that Malaysia may be unique compared to other countries and that by considering a number of additional factors, SCM could prove beneficial to increase efficiency of the Malaysian public sector projects.
Resumo:
Multiple-time signatures are digital signature schemes where the signer is able to sign a predetermined number of messages. They are interesting cryptographic primitives because they allow to solve many important cryptographic problems, and at the same time offer substantial efficiency advantage over ordinary digital signature schemes like RSA. Multiple-time signature schemes have found numerous applications, in ordinary, on-line/off-line, forward-secure signatures, and multicast/stream authentication. We propose a multiple-time signature scheme with very efficient signing and verifying. Our construction is based on a combination of one-way functions and cover-free families, and it is secure against the adaptive chosen-message attack.
Resumo:
The purpose of this paper is to describe a new decomposition construction for perfect secret sharing schemes with graph access structures. The previous decomposition construction proposed by Stinson is a recursive method that uses small secret sharing schemes as building blocks in the construction of larger schemes. When the Stinson method is applied to the graph access structures, the number of such “small” schemes is typically exponential in the number of the participants, resulting in an exponential algorithm. Our method has the same flavor as the Stinson decomposition construction; however, the linear programming problem involved in the construction is formulated in such a way that the number of “small” schemes is polynomial in the size of the participants, which in turn gives rise to a polynomial time construction. We also show that if we apply the Stinson construction to the “small” schemes arising from our new construction, both have the same information rate.
Resumo:
Objectives Given increasing trends of obesity being noted from early in life and that active lifestyles track across time, it is important that children at a very young age be active to combat a foundation of unhealthy behaviours forming. This study investigated, within a theory of planned behaviour (TPB) framework, factors which influence mothers’ decisions about their child’s 1) adequate physical activity (PA) and 2) limited screen time behaviours. Methods Mothers (N = 162) completed a main questionnaire, via on-line or paper-based administration, which comprised standard TPB items in addition to measures of planning and background demographic variables. One week later, consenting mothers completed a follow-up telephone questionnaire which assessed the decisions they had made regarding their child’s PA and screen time behaviours during the previous week. Results Hierarchical multiple regression analyses revealed support for the predictive model, explaining an overall 73% and 78% of the variance in mothers’ intention and 38% and 53% of the variance in mothers’ decisions to ensure their child engages in adequate PA and limited screen time, respectively. Attitude and subjective norms predicted intention in both target behaviours, as did intentions with behaviour. Contrary to predictions, perceived behavioural control (PBC) in PA behaviour and planning in screen time behaviour were not significant predictors of intention, neither was PBC a predictor of either behaviour. Conclusions The findings illustrate the various roles that psycho-social factors play in mothers’ decisions to ensure their child engages in active lifestyle behaviours which can help to inform future intervention programs aimed at combating very young children’s inactivity.
Resumo:
Background How accurately do people perceive extreme water speeds and how does their perception affect perceived risk? Prior research has focused on the characteristics of moving water that can reduce human stability or balance. The current research presents the first experiment on people's perceptions of risk and moving water at different speeds and depths. Methods Using a randomized within-person 2 (water depth: 0.45, 0.90 m) ×3 (water speed: 0.4, 0.8, 1.2 m/s) experiment, we immersed 76 people in moving water and asked them to estimate water speed and the risk they felt. Results Multilevel modeling showed that people increasingly overestimated water speeds as actual water speeds increased or as water depth increased. Water speed perceptions mediated the direct positive relationship between actual water speeds and perceptions of risk; the faster the moving water, the greater the perceived risk. Participants' prior experience with rip currents and tropical cyclones moderated the strength of the actual–perceived water speed relationship; consequently, mediation was stronger for people who had experienced no rip currents or fewer storms. Conclusions These findings provide a clearer understanding of water speed and risk perception, which may help communicate the risks associated with anticipated floods and tropical cyclones.
Resumo:
Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters.
Resumo:
Introduction The acute health effects of heatwaves in a subtropical climate and their impact on emergency departments (ED) are not well known. The purpose of this study is to examine overt heat-related presentations to EDs associated with heatwaves in Brisbane. Methods Data were obtained for the summer seasons (December to February) from 2000-2012. Heatwave events were defined as two or more successive days with daily maximum temperature >=34[degree sign]C (HWD1) or >=37[degree sign]C (HWD2). Poisson generalised additive model was used to assess the effect of heatwaves on heat-related visits (International Classification of Diseases (ICD) 10 codes T67 and X30; ICD 9 codes 992 and E900.0). Results Overall, 628 cases presented for heat-related illnesses. The presentations significantly increased on heatwave days based on HWD1 (relative risk (RR) = 4.9, 95% confidence interval (CI): 3.8, 6.3) and HWD2 (RR = 18.5, 95% CI: 12.0, 28.4). The RRs in different age groups ranged between 3-9.2 (HWD1) and 7.5-37.5 (HWD2). High acuity visits significantly increased based on HWD1 (RR = 4.7, 95% CI: 2.3, 9.6) and HWD2 (RR = 81.7, 95% CI: 21.5, 310.0). Average length of stay in ED significantly increased by >1 hour (HWD1) and >2 hours (HWD2). Conclusions Heatwaves significantly increase ED visits and workload even in a subtropical climate. The degree of impact is directly related to the extent of temperature increases and varies by socio-demographic characteristics of the patients. Heatwave action plans should be tailored according to the population needs and level of vulnerability. EDs should have plans to increase their surge capacity during heatwaves.
Resumo:
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.
Resumo:
The global trend toward university-based journalism education has led to a growing scrutiny of students’ experiences at university and the extent to which professional views may be shaped there. Three main influences have been identified in the literature: students’ preferences for certain news beats, their gender, and students’ stage of progression in a journalism program. Typically, however, analyses have focused on only one potential influence within one particular country at a time. Arguing that a comparative approach is needed, this article examines potential influences on journalism students’ role perceptions across eight countries. Results suggest that students’ motivations, and the amount of time they have spent in a program, play a part in influencing their professional views while gender has little influence.
Resumo:
This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms associated with fluid memory effects are replaced by an alternative state-space representation, the parameters of which are obtained by using realization theory. The mathematical model established is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.
Resumo:
Today the future is travelling rapidly towards us, shaped by all that which we have historically thrown into it. Much of what we have designed for our world over the ages, and much of what we continue to embrace in the pursuit of mainstream economic, cultural and social imperatives, embodies unacknowledged ‘time debts’. Every decision we make today has the potential to ‘give time to’, or take ‘time away’ from that future. This idea that ‘everything‘ inherently embodies ‘future time left’ is underlined by design futurist Tony Fry when he describes how we so often ‘waste’ or ‘take away’ ‘future time’. “In our endeavours to sustain ourselves in the short term we collectively act in destructive ways towards the very things we and all other beings fundamentally depend upon”
Resumo:
The dynamics describing the motion response of a marine structure in waves can be represented within a linear framework by the Cummins Equation. This equation contains a convolution term that represents the component of the radiation forces associated with fluid memory effects. Several methods have been proposed in the literature for the identification of parametric models to approximate and replace this convolution term. This replacement can facilitate the model implementation in simulators and the analysis of motion control designs. Some of the reported identification methods consider the problem in the time domain while other methods consider the problem in the frequency domain. This paper compares the application of these identification methods. The comparison is based not only on the quality of the estimated models, but also on the ease of implementation, ease of use, and the flexibility of the identification method to incorporate prior information related to the model being identified. To illustrate the main points arising from the comparison, a particular example based on the coupled vertical motion of a modern containership vessel is presented.
Resumo:
This study reports that treatment of osseous defects with different growth factors initiates distinct rates of repair. We developed a new method for monitoring the progression of repair, based upon measuring the in vivo mechanical properties of healing bone. Two different members of the bone morphogenetic protein (BMP) family were chosen to initiate defect healing: BMP-2 to induce osteogenesis, and growth-and-differentiation factor (GDF)-5 to induce chondrogenesis. To evaluate bone healing, BMPs were implanted into stabilised 5 mm bone defects in rat femurs and compared to controls. During the first two weeks, in vivo biomechanical measurements showed similar values regardless of the treatment used. However, 2 weeks after surgery, the rhBMP-2 group had a substantial increase in stiffness, which was supported by the imaging modalities. Although the rhGDF-5 group showed comparable mechanical properties at 6 weeks as the rhBMP-2 group, the temporal development of regenerating tissues appeared different with rhGDF-5, resulting in a smaller callus and delayed tissue mineralisation. Moreover, histology showed the presence of cartilage in the rhGDF-5 group whereas the rhBMP-2 group had no cartilaginous tissue. Therefore, this study shows that rhBMP-2 and rhGDF-5 treated defects, under the same conditions, use distinct rates of bone healing as shown by the tissue mechanical properties. Furthermore, results showed that in vivo biomechanical method is capable of detecting differences in healing rate by means of change in callus stiffness due to tissue mineralisation.