733 resultados para Organic media
Resumo:
From selfies and memes to hashtags and parodies, social media are used for mundane and personal expressions of political commentary, engagement, and participation. The coverage of politics reflects the social mediation of everyday life, where individual experiences and thoughts are documented and shared online. In Social Media and Everyday Politics, Tim Highfield examines political talk as everyday occurrences on Twitter, Facebook, blogs, Tumblr, Instagram, and more. He considers the personal and the political, the serious and the silly, and the everyday within the extraordinary, as politics arises from seemingly banal and irreverent topics. The analysis features international examples and evolving practices, from French blogs to Vines from Australia, via the Arab Spring, Occupy, #jesuischarlie, Eurovision, #blacklivesmatter, Everyday Sexism, and #illridewithyou. This timely book will be a valuable resource for students and scholars in media and communications, internet studies, and political science, as well as general readers keen to understand our contemporary media and political contexts.
Resumo:
This thesis presents a case study of value creation in the social media based brand communities of two Australian cause organisations. It improves understanding of how value is created in this increasingly important environment by examining participants' posts and practices, organisational strategies and supporters' perceptions of value creation. The thesis shows that while value creation is complex, value is generated for supporters and organisations alike, and positively influences the outcomes for recipients of the vital services provided by the cause organisations. Value creation in this context thus manifests social good for supporters, service recipients and society at large.
Resumo:
This thesis investigated the impact of organic sources of nutrients on greenhouse gas emissions (carbon dioxide, nitrous oxide and methane), nitrogen use efficiency and biomass production in subtropical cropping soils. The study was conducted in two main soil types in subtropical ecosystems, sandy loam soil and clay soil, with a variety of organic materials from agro-industrial residues and crop residues. It is important for recycling of agro-industrial residues and agricultural residues and the mitigation of greenhouse gas emissions and nitrogen use efficiency.
Resumo:
In this presentation, I reflect upon the global landscape surrounding the governance and classification of media content, at a time of rapid change in media platforms and services for content production and distribution, and contested cultural and social norms. I discuss the tensions and contradictions arising in the relationship between national, regional and global dimensions of media content distribution, as well as the changing relationships between state and non-state actors. These issues will be explored through consideration of issues such as: recent debates over film censorship; the review of the National Classification Scheme conducted by the Australian Law Reform Commission; online controversies such as the future of the Reddit social media site; and videos posted online by the militant group ISIS.
Resumo:
This paper steps back from the question of how regulation of digital media content occurs, and whether it can be effective, to consider the rationales that inform regulation, and the ethics and practices associated with content regulation. It will be argued that Max Weber's account of bureaucratic expertise remains relevant to such discussions, particularly insofar as it intersects with Michel Foucault's concept of governmentality, and contemporary applications of the notion of 'governing at a distance'. The nature of the challenges to media regulators presented by online environments, and by digital and social media, are considered in depth, but it is argued that the significance of regulatory innovations that respond to such challenges should not be underestimated, nor should the continuing national foundations of media regulation. It will also discuss the relevance of the concept of 'soft law' to contemporary regulatory practice.
Resumo:
Jürgen Habermas’s concept of the public sphere remains a major building block for our understanding of public communication and deliberation. Yet ‘the’ public sphere is a construct of its time, and the mass media-dominated environment which it describes has given way to a considerably more fragmented and complex system of distinct and diverse, yet interconnected and overlapping publics that represent different themes, topics, and approaches to mediated communication. This chapter argues that moving beyond the orthodox model of the public sphere to a more dynamic and complex conceptual framework provides the opportunity to more clearly recognise the varying forms that public communication can take, especially online. Unpacking the traditional public sphere into a series of public sphericules and micro-publics, none of which are mutually exclusive but which co-exist, intersecting and overlapping in multiple forms, is crucial for understanding the ongoing structural transformation of ‘the’ public sphere.
Resumo:
In political journalism, the battle over agenda-setting between journalists and their sources has been described using many metaphors and concepts. Herbert Gans saw it as a dance where the two parties competed for leadership, arguing that sources usually got the lead. We address the question of how social media, in particular Twitter, contribute to media agenda-building and agenda-setting by looking at how tweets are sourced in election campaign coverage in Australia, Norway and Sweden. Our findings show that the popularity of elite political sources is a common characteristic across all countries and media. Sourcing from Twitter reinforces the power of the political elites to set the agenda of the news media – they are indeed “still leading the dance”. Twitter content travels to the news media as opinions, comments, announcements, factual statements, and photos. Still, there are variations that must be explained both by reference to different political and cultural characteristics of the three countries, as well as by the available resources and journalistic profiles of each media outlet.
Resumo:
This chapter examines patterns in social media activity around Australian elections, focusing primarily on the 2013 federal election and supplemented by extended research into social media and Australian politics between 2007 and 2015. The coverage of Australian elections on social media is analysed from three perspectives: the evolution of the use of online platforms during elections; politician and party social media strategies during the 2013 election, focusing on Twitter; and citizen engagement with elections as demonstrated through election day tweeting practices. The specific context of Australian politics, where voting is compulsory, and the popularity of social media platforms like Twitter makes this case notably different from other Western democracies. It also demonstrates the extended mediation of politics through social media, for politicians and citizens alike.
Resumo:
Social media are now widely used for political protests, campaigns, and communication in developed and developing nations, but available research has not yet paid sufficient attention to experiences beyond the US and UK. This collection tackles this imbalance head-on, compiling cutting-edge research across six continents to provide a comprehensive, global, up-to-date review of recent political uses of social media. Drawing together empirical analyses of the use of social media by political movements and in national and regional elections and referenda, The Routledge Companion to Social Media and Politics presents studies ranging from Anonymous and the Arab Spring to the Greek Aganaktismenoi, and from South Korean presidential elections to the Scottish independence referendum. The book is framed by a selection of keystone theoretical contributions, evaluating and updating existing frameworks for the social media age. "Comprehensive and definitive, this is an outstanding book that provides a panoramic view of politics in an era of social media. From the Mediterranean to East Asia to Oceania, from Scandinavia to sub-Sahara Africa to Latin America, the volume as a whole is truly global, yet with nuanced regional and national analyses in each chapter. Theoretically informed, the research presented here breaks new empirical grounds using latest digital methods. The result is a milestone for our collective understanding of new media technology and comparative politics in the twenty-first century." ―Jack Linchuan Qiu, The Chinese University of Hong Kong "This book brings together top scholars from across disciplines and across the globe to examine social media use in a variety of political systems and for distinct purposes. It is required reading for anyone interested in understanding the many ways that digital communication technologies now are used in political life." ―Jennifer Stromer-Galley, Syracuse University
Resumo:
Despite many synthetic biomaterials having physical properties that are comparable or even superior to those of natural body tissues, they frequently fail due to the adverse physiological reactions they cause within the human body, such as infection and inflammation. The surface modification of biomaterials is an economical and effective method by which biocompatibility and biofunctionality can be achieved while preserving the favorable bulk characteristics of the biomaterial, such as strength and inertness. Amongst the numerous surface modification techniques available, plasma surface modification affords device manufacturers a flexible and environmentally friendly process that enables tailoring of the surface morphology, structure, composition, and properties of the material to a specific need. There are a vast range of possible applications of plasma modification in biomaterial applications, however, the focus of this review paper is on processes that can be used to develop surface morphologies and chemical structures for the prevention of adhesion and proliferation of pathogenic bacteria on the surfaces of in-dwelling medical devices. As such, the fundamental principles of bacterial cell attachment and biofilm formation are also discussed. Functional organic plasma polymerised coatings are also discussed for their potential as biosensitive interfaces, connecting inorganic/metallic electronic devices with their physiological environments.
Resumo:
In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.
Resumo:
The effect of material properties of an environmentally friendly, optically transparent dielectric material, polyterpenol, on the carrier transients within the pentacene-based double-layer MTM device was investigated. Polyterpenol films were RF plasma polymerised under varied process conditions, with resultant films differing in surface chemistry and morphology. Independent of type of polyterpenol, time-resolved EFISHG study of IZO/polyterpenol/pentacene/Au structures showed similar transient behaviour with carriers injected into pentacene from Au electrode only, confirming polyterpenol to be a suitable blocking layer for visualisation of single-species carrier transportation during charging and discharging under different bias conditions. Polyterpenol fabricated under higher input power show better promise due to higher chemical and thermal stability, improved uniformity, and absence of defects.
Resumo:
A non-synthetic polymer material, polyterpenol, was fabricated using a dry polymerization process namely RF plasma polymerization from an environmentally friendly monomer and its surface, optical and electrical properties investigated. Polyterpenol films were found to be transparent over the visible wavelength range, with a smooth surface with an average roughness of less than 0.4 nm and hardness of 0.4 GPa. The dielectric constant of 3.4 for polyterpenol was higher than that of the conventional polymer materials used in the organic electronic devices. The non-synthetic polymer material was then implemented as a surface modification of the gate insulator in field effect transistor (OFET) and the properties of the device were examined. In comparison to the similar device without the polymer insulating layer, the polyterpenol based OFET device showed significant improvements. The addition of the polyterpenol interlayer in the OFET shifted the threshold voltage significantly; + 20 V to -3 V. The presence of trapped charge was not observed in the polyterpenol interlayer. This assisted in the improvement of effective mobility from 0.012 to 0.021 cm 2/Vs. The switching property of the polyterpenol based OFET was also improved; 107 compared to 104. The results showed that the non-synthetic polyterpenol polymer film is a promising candidate of insulators in electronic devices.
Resumo:
After more than twenty years of basic and applied research, the use of nanotechnology in the design and manufacture of nanoscale materials is rapidly increasing, particularly in commercial applications that span from electronics across renewable energy areas, and biomedical devices. Novel polymers are attracting significant attention for they promise to provide a low−cost high−performance alternative to existing materials. Furthermore, these polymers have the potential to overcome limitations imposed by currently available materials thus enabling the development of new technologies and applications that are currently beyond our reach. This work focuses on the development of a range of new low−cost environmentally−friendly polymer materials for applications in areas of organic (flexible) electronics, optics, and biomaterials. The choice of the monomer reflects the environmentally−conscious focus of this project. Terpinen−4−ol is a major constituent of Australian grown Melaleuca alternifolia (tea tree) oil, attributed with the oil's antimicrobial and anti−inflammatory properties. Plasma polymerisation was chosen as a deposition technique for it requires minimal use of harmful chemicals and produces no hazardous by−products. Polymer thin films were fabricated under varied process conditions to attain materials with distinct physico−chemical, optoelectrical, biological and degradation characteristics. The resultant materials, named polyterpenol, were extensively characterised using a number of well−accepted and novel techniques, and their fundamental properties were defined. Polyterpenol films were demonstrated to be hydrocarbon rich, with variable content of oxygen moieties, primarily in the form of hydroxyl and carboxyl functionalities. The level of preservation of original monomer functionality was shown to be strongly dependent on the deposition energy, with higher applied power increasing the molecular fragmentation and substrate temperature. Polyterpenol water contact angle contact angle increased from 62.7° for the 10 W samples to 76.3° for the films deposited at 100 W. Polymers were determined to resist solubilisation by water, due to the extensive intermolecular and intramolecular hydrogen bonds present, and other solvents commonly employed in electronics and biomedical processing. Independent of deposition power, the surface topography of the polymers was shown to be smooth (Rq <0.5 nm), uniform and defect free. Hardness of polyterpenol coatings increased from 0.33 GPa for 10 W to 0.51 GPa for 100 W (at 500 μN load). Coatings deposited at higher input RF powers showed less mechanical deformation during nanoscratch testing, with no considerable damage, cracking or delamination observed. Independent of the substrate, the quality of film adhesion improved with RF power, suggesting these coatings are likely to be more stable and less susceptible to wear. Independent of fabrication conditions, polyterpenol thin films were optically transparent, with refractive index approximating that of glass. Refractive index increased slightly with deposition power, from 1.54 (10 W) to 1.56 (100 W) at 500 nm. The optical band gap values declined with increasing power, from 2.95 eV to 2.64 eV, placing the material within the range for semiconductors. Introduction of iodine impurity reduced the band gap of polyterpenol, from 2.8 eV to 1.64 eV, by extending the density of states more into the visible region of the electromagnetic spectrum. Doping decreased the transparency and increased the refractive index from 1.54 to 1.70 (at 500 nm). At optical frequencies, the real part of permittivity (k) was determined to be between 2.34 and 2.65, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies, where permittivity increased with input RF energy – from 2.32 to 2.53 (at 10 GHz ) and from 2.65 to 2.83 (at 20 GHz). At low frequencies, the dielectric constant was determined from current−voltage characteristics of Al−polyterpenol−Al devices. At frequencies below 100 kHz, the dielectric constant varied with RF power, from 3.86 to 4.42 at 1 kHz. For all samples, the resistivity was in order of 10⁸−10⁹ _m (at 6 V), confirming the insulating nature of polyterpenol material. In situ iodine doping was demonstrated to increase the conductivity of polyterpenol, from 5.05 × 10⁻⁸ S/cm to 1.20 × 10⁻⁶ S/cm (at 20 V). Exposed to ambient conditions over extended period of time, polyterpenol thin films were demonstrated to be optically, physically and chemically stable. The bulk of ageing occurred within first 150 h after deposition and was attributed to oxidation and volumetric relaxation. Thermal ageing studies indicated thermal stability increased for the films manufactured at higher RF powers, with degradation onset temperature associated with weight loss shifting from 150 ºC to 205 ºC for 10 W and 100 W polyterpenol, respectively. Annealing the films to 405 °C resulted in full dissociation of the polymer, with minimal residue. Given the outcomes of the fundamental characterisation, a number of potential applications for polyterpenol have been identified. Flexibility, tunable permittivity and loss tangent properties of polyterpenol suggest the material can be used as an insulating layer in plastic electronics. Implementation of polyterpenol as a surface modification of the gate insulator in pentacene-based Field Effect Transistor resulted in significant improvements, shifting the threshold voltage from + 20 V to –3 V, enhancing the effective mobility from 0.012 to 0.021 cm²/Vs, and improving the switching property of the device from 10⁷ to 10⁴. Polyterpenol was demonstrated to have a hole transport electron blocking property, with potential applications in many organic devices, such as organic light emitting diodes. Encapsulation of biomedical devices is also proposed, given that under favourable conditions, the original chemical and biological functionality of terpinen−4−ol molecule can be preserved. Films deposited at low RF power were shown to successfully prevent adhesion and retention of several important human pathogens, including P. aeruginosa, S. aureus, and S. epidermidis, whereas films deposited at higher RF power promoted bacterial cell adhesion and biofilm formation. Preliminary investigations into in vitro biocompatibility of polyterpenol demonstrated the coating to be non−toxic for several types of eukaryotic cells, including Balb/c mice macrophage and human monocyte type (HTP−1 non-adherent) cells. Applied to magnesium substrates, polyterpenol encapsulating layer significantly slowed down in vitro biodegradation of the metal, thus increasing the viability and growth of HTP−1 cells. Recently, applied to varied nanostructured titanium surfaces, polyterpenol thin films successfully reduced attachment, growth, and viability of P. aeruginosa and S. aureus.
Resumo:
This article examines Greek activists’ use of a range of communication technologies, including social media, blogs, citizen journalism sites, Web radio, and anonymous networks. Drawing on Anna Tsing’s theoretical model, the article examines key frictions around digital technologies that emerged within a case study of the antifascist movement in Athens, focusing on the period around the 2013 shutdown of Athens Indymedia. Drawing on interviews with activists and analysis of online communications, including issue networks and social media activity, we find that the antifascist movement itself is created and recreated through a process of productive friction, as different groups and individuals with varying ideologies and experiences work together.