803 resultados para Bayesian modelling
Resumo:
Ecological studies are based on characteristics of groups of individuals, which are common in various disciplines including epidemiology. It is of great interest for epidemiologists to study the geographical variation of a disease by accounting for the positive spatial dependence between neighbouring areas. However, the choice of scale of the spatial correlation requires much attention. In view of a lack of studies in this area, this study aims to investigate the impact of differing definitions of geographical scales using a multilevel model. We propose a new approach -- the grid-based partitions and compare it with the popular census region approach. Unexplained geographical variation is accounted for via area-specific unstructured random effects and spatially structured random effects specified as an intrinsic conditional autoregressive process. Using grid-based modelling of random effects in contrast to the census region approach, we illustrate conditions where improvements are observed in the estimation of the linear predictor, random effects, parameters, and the identification of the distribution of residual risk and the aggregate risk in a study region. The study has found that grid-based modelling is a valuable approach for spatially sparse data while the SLA-based and grid-based approaches perform equally well for spatially dense data.
Resumo:
Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well understood that available water quality datasets in urban areas span only relatively short time scales unlike water quantity data, which limits the applicability of the developed models in engineering and ecological assessment of urban waterways. This paper presents the application of leave-one-out (LOO) and Monte Carlo cross validation (MCCV) procedures in a Monte Carlo framework for the validation and estimation of uncertainty associated with pollutant wash-off when models are developed using a limited dataset. It was found that the application of MCCV is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO were found to be effective in model validation when dealing with a small sample size which hinders detailed model validation and can undermine the effectiveness of stormwater quality management strategies.
Resumo:
Quantifying the impact of biochemical compounds on collective cell spreading is an essential element of drug design, with various applications including developing treatments for chronic wounds and cancer. Scratch assays are a technically simple and inexpensive method used to study collective cell spreading; however, most previous interpretations of scratch assays are qualitative and do not provide estimates of the cell diffusivity, D, or the cell proliferation rate,l. Estimating D and l is important for investigating the efficacy of a potential treatment and provides insight into the mechanism through which the potential treatment acts. While a few methods for estimating D and l have been proposed, these previous methods lead to point estimates of D and l, and provide no insight into the uncertainty in these estimates. Here, we compare various types of information that can be extracted from images of a scratch assay, and quantify D and l using discrete computational simulations and approximate Bayesian computation. We show that it is possible to robustly recover estimates of D and l from synthetic data, as well as a new set of experimental data. For the first time, our approach also provides a method to estimate the uncertainty in our estimates of D and l. We anticipate that our approach can be generalized to deal with more realistic experimental scenarios in which we are interested in estimating D and l, as well as additional relevant parameters such as the strength of cell-to-cell adhesion or the strength of cell-to-substrate adhesion.
Resumo:
The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.
Resumo:
Quantum-like models can be fruitfully used to model attitude change in a social context. Next steps require data, and higher dimensional models. Here, we discuss an exploratory study that demonstrates an order effect when three question sets about Climate Beliefs, Political Affiliation and Attitudes Towards Science are presented in different orders within a larger study of n=533 subjects. A quantum-like model seems possible, and we propose a new experiment which could be used to test between three possible models for this scenario.
Resumo:
Approximate Bayesian Computation’ (ABC) represents a powerful methodology for the analysis of complex stochastic systems for which the likelihood of the observed data under an arbitrary set of input parameters may be entirely intractable – the latter condition rendering useless the standard machinery of tractable likelihood-based, Bayesian statistical inference [e.g. conventional Markov chain Monte Carlo (MCMC) simulation]. In this paper, we demonstrate the potential of ABC for astronomical model analysis by application to a case study in the morphological transformation of high-redshift galaxies. To this end, we develop, first, a stochastic model for the competing processes of merging and secular evolution in the early Universe, and secondly, through an ABC-based comparison against the observed demographics of massive (Mgal > 1011 M⊙) galaxies (at 1.5 < z < 3) in the Cosmic Assembly Near-IR Deep Extragalatic Legacy Survey (CANDELS)/Extended Groth Strip (EGS) data set we derive posterior probability densities for the key parameters of this model. The ‘Sequential Monte Carlo’ implementation of ABC exhibited herein, featuring both a self-generating target sequence and self-refining MCMC kernel, is amongst the most efficient of contemporary approaches to this important statistical algorithm. We highlight as well through our chosen case study the value of careful summary statistic selection, and demonstrate two modern strategies for assessment and optimization in this regard. Ultimately, our ABC analysis of the high-redshift morphological mix returns tight constraints on the evolving merger rate in the early Universe and favours major merging (with disc survival or rapid reformation) over secular evolution as the mechanism most responsible for building up the first generation of bulges in early-type discs.
Resumo:
Despite the prominent use of the pubic symphysis for age estimation in forensic anthropology, little has been documented regarding the quantitative morphological and micro-architectural changes of this surface. Specifically, utilising post-mortem computed tomography data from a large, contemporary Australian adult population, this study aimed to evaluate sexual dimorphism in the morphology and bone composition of the symphyseal surface; and temporal characterisation of the pubic symphysis in individuals of advancing age. The sample consisted of multi-slice computed tomography (MSCT) scans of the pubic symphysis(slice thickness: 0.5 mm, overlap: 0.1 mm) of 200 individuals of Caucasian ancestry aged 15–70 years, obtained in 2011. Surface rendering reconstruction of the symphyseal surface was conducted in OsiriX1 (v.4.1) and quantitative analyses in Rapidform XOSTM and OsteomeasureTM. Morphometric variables including inter-pubic distance, surface area, circumference, maximum height and width of the symphyseal surface and micro-architectural assessment of cortical and trabecular bone compositions were quantified using novel automated engineering software capabilities. The major results of this study are correlated with the macroscopic ossification and degeneration pattern of the symphyseal surface, demonstrating significant age-related changes in the morphometric and bone tissue variables between 15 and 70 years. Regardless of sex, the overall dimensions of the symphyseal surface increased with age, coupled with a decrease in bone mass in the trabecular and cortical bone compartments. Significant differences between the ventral, dorsal and medial cortical surfaces were observed, which may be correlated to bone formation activity dependent on muscle activity and ligamentous attachments. Our study demonstrates significant sexual dimorphism at this site, with males exhibiting greater surface dimensions than females. These baseline results provide a detailed insight into the changes in the structure of the pubic symphysis with ageing and sexually dimorphic features associated with the cortical and trabecular bone profiles.
Resumo:
Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces. The ABC algorithm proposed here addresses model choice problems by extending Fearnhead and Prangle (2012, Journal of the Royal Statistical Society, Series B 74, 1–28) where the posterior mean of the model parameters estimated through regression formed the summary statistics used in the discrepancy measure. An additional stepwise multinomial logistic regression is performed on the model indicator variable in the regression step and the estimated model probabilities are incorporated into the set of summary statistics for model choice purposes. A reversible jump Markov chain Monte Carlo step is also included in the algorithm to increase model diversity for thorough exploration of the model space. This algorithm was applied to a validating example to demonstrate the robustness of the algorithm across a wide range of true model probabilities. Its subsequent use in three pathogen transmission examples of varying complexity illustrates the utility of the algorithm in inferring preference of particular transmission models for the pathogens.
Resumo:
A computationally efficient sequential Monte Carlo algorithm is proposed for the sequential design of experiments for the collection of block data described by mixed effects models. The difficulty in applying a sequential Monte Carlo algorithm in such settings is the need to evaluate the observed data likelihood, which is typically intractable for all but linear Gaussian models. To overcome this difficulty, we propose to unbiasedly estimate the likelihood, and perform inference and make decisions based on an exact-approximate algorithm. Two estimates are proposed: using Quasi Monte Carlo methods and using the Laplace approximation with importance sampling. Both of these approaches can be computationally expensive, so we propose exploiting parallel computational architectures to ensure designs can be derived in a timely manner. We also extend our approach to allow for model uncertainty. This research is motivated by important pharmacological studies related to the treatment of critically ill patients.
Resumo:
Purpose Food refusal is part of normal toddler development due to an innate ability to self-regulate energy intake and the onset of neophobia. For parents, this ‘fussy’ stage causes great concern, prompting use of coercive feeding practices which ignore a child’s own hunger and satiety cues, promoting overeating and overweight. This analysis defines characteristics of the ‘good eater’ using latent variable structural equation modelling and the relationship with maternal perception of her child as a fussy eater. Methods Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n=332) completed a self-administered questionnaire - when child was age 12-16 months - describing refusal of familiar and unfamiliar foods and maternal perception as fussy/not fussy. Weight-for-age z-score (WAZ) was derived from weight measured by study staff. Questionnaire items and WAZ were combined in AMOS to represent the latent variable the ‘good eater’. Results/findings Mean age(sd) of children was 13.8(1.3) months, mean WAZ(sd), .58(.86) and 49% were male. The ‘good eater’ was represented by higher WAZ, a child that hardly ever refuses food, hardly ever refuses familiar food, and willing to eat unfamiliar foods (x2/df=2.80, GFI=.98, RMSEA=.07(.03-.12), CFI=.96). The ‘good eater’ was inversely associated with maternal perception of her child as a fussy eater (β=-.64, p<.05). Conclusions Toddlers displaying characteristics of a ‘good eater’ are not perceived as fussy, but these characteristics, especially higher WAZ, may be undesirable in the context of obesity prevention. Clinicians can promote food refusal as normal and even desirable in healthy young children.
Resumo:
The development of offshore oil and gas fields require the placement of different equipment on the sea floor. This is done by deploying the equipment from vessels operating in dynamic positioning on the surface. The deployment operation has different phases, and in higher sea states, it may require wave-load synchronization, when the load is going through the splash zone, and heave compensation when the load is close to the sea floor. In this paper, we analyse the performance of a particular type of hardware operating in a heave compensation mode. We derive a comprehensive model, analyse limits of performance and evaluate a control strategy.