767 resultados para 290102 Food Engineering
Resumo:
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-3,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products.
Resumo:
Domestic food wastage is a growing problem for the environment and food security. Some causes of domestic food wastes are attributed to a consumer’s behaviours during food purchasing, storage and consumption, such as: excessive food purchases and stockpiling in storage. Recent efforts in human-computer interaction research have examined ways of influencing consumer behaviour. The outcomes have led to a number of interventions that assist users with performing everyday tasks. The Internet Fridge is an example of such an intervention. However, new pioneering technologies frequently confront barriers that restrict their future impact in the market place, which has prompted investigations into the effectiveness of behaviour changing interventions used to encourage more sustainable practices. In this paper, we investigate and compare the effectiveness of two interventions that encourage behaviour change: FridgeCam and the Colour Code Project. We use FridgeCam to examine how improving a consumer’s food supply knowledge can reduce food stockpiling. We use the Colour Code Project to examine how improving consumer awareness of food location can encourage consumption of forgotten foods. We explore opportunities to integrate these interventions into commercially available technologies, such as the Internet Fridge, to: (i) increase the technology’s benefit and value to users, and (ii) promote reduced domestic food wastage. We conclude that interventions improving consumer food supply and location knowledge can promote behaviours that reduce domestic food waste over a longer term. The implications of this research present new opportunities for existing and future technologies to play a key role in reducing domestic food waste.
Resumo:
As urbanisation of the global population has increased above 50%, growing food in urban spaces increases in importance, as it can contribute to food security, reduce food miles, and improve people’s physical and mental health. Approaching the task of growing food in urban environments is a mixture of residential growers and groups. Permablitz Brisbane is an event-centric grassroots community that organises daylong ‘working bee’ events, drawing on permaculture design principles in the planning and design process. Permablitz Brisbane provides a useful contrast from other location-centric forms of urban agriculture communities (such as city farms or community gardens), as their aim is to help encourage urban residents to grow their own food. We present findings and design implications from a qualitative study with members of this group, using ethnographic methods to engage with and understand how this group operates. Our findings describe four themes that include opportunities, difficulties, and considerations for the creation of interventions by Human-Computer Interaction (HCI) designers.
Resumo:
Objectives: Examine the association between food insecurity (FI) and physical activity (PA) in the U.S. population. Methods: Accelerometry (PAM) and self-report PA (PAQ) data from NHANES 2003-2006 were used. Those aged less than six years or were older than 65 years, pregnant, with physical limitations, or with family income above 350% of the poverty line were excluded. FI was measured by the USDA Household Food Security Survey Module. Crude and adjusted odd ratios were calculated from logistic regression to identify the association between FI and adherence to the PA recommendation. Crude and adjusted coefficients were calculated from linear regression to identify the association between FI and both sedentary and activity minutes. Results: In children, FI was not associated with adherence to PA recommendation measured via PAM or PAQ (p>0.05) but was significantly associated with sedentary minutes (adjusted coefficient=10.74, one-sided p<0.05). Food-insecure children did less moderate-to-vigorous PA than did food-secure children (adjusted coefficient = -5.31, p = 0.032). In adults, FI was significantly associated with PA (adjusted OR=0.722 for PAM and OR=0.839 for PAQ, one-sided p<0.05) but not associated with sedentary minutes (p>0.05) Conclusions: FI children were more sedentary and FI adults were less likely to adhere to the PA recommendation than those without FI.
Resumo:
Background Household food insecurity and physical activity are each important public-health concerns in the United States, but the relation between them was not investigated thoroughly. Objective We wanted to examine the association between food insecurity and physical activity in the U.S. population. Methods Physical activity measured by accelerometry (PAM) and physical activity measured by questionnaire (PAQ) data from the NHANES 2003–2006 were used. Individuals aged <6 y or >65 y, pregnant, with physical limitations, or with family income >350% of the poverty line were excluded. Food insecurity was measured by the USDA Household Food Security Survey Module. Adjusted ORs were calculated from logistic regression to identify the association between food insecurity and adherence to the physical-activity guidelines. Adjusted coefficients were obtained from linear regression to identify the association between food insecurity with sedentary/physical-activity minutes. Results In children, food insecurity was not associated with adherence to physical-activity guidelines measured via PAM or PAQ and with sedentary minutes (P > 0.05). Food-insecure children did less moderate to vigorous physical activity than food-secure children (adjusted coefficient = −5.24, P = 0.02). In adults, food insecurity was significantly associated with adherence to physical-activity guidelines (adjusted OR = 0.72, P = 0.03 for PAM; and OR = 0.84, P < 0.01 for PAQ) but was not associated with sedentary minutes (P > 0.05). Conclusion Food-insecure children did less moderate to vigorous physical activity, and food-insecure adults were less likely to adhere to the physical-activity guidelines than those without food insecurity.
Resumo:
Purpose Food refusal is part of normal toddler development due to an innate ability to self-regulate energy intake and the onset of neophobia. For parents, this ‘fussy’ stage causes great concern, prompting use of coercive feeding practices which ignore a child’s own hunger and satiety cues, promoting overeating and overweight. This analysis defines characteristics of the ‘good eater’ using latent variable structural equation modelling and the relationship with maternal perception of her child as a fussy eater. Methods Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n=332) completed a self-administered questionnaire - when child was age 12-16 months - describing refusal of familiar and unfamiliar foods and maternal perception as fussy/not fussy. Weight-for-age z-score (WAZ) was derived from weight measured by study staff. Questionnaire items and WAZ were combined in AMOS to represent the latent variable the ‘good eater’. Results/findings Mean age(sd) of children was 13.8(1.3) months, mean WAZ(sd), .58(.86) and 49% were male. The ‘good eater’ was represented by higher WAZ, a child that hardly ever refuses food, hardly ever refuses familiar food, and willing to eat unfamiliar foods (x2/df=2.80, GFI=.98, RMSEA=.07(.03-.12), CFI=.96). The ‘good eater’ was inversely associated with maternal perception of her child as a fussy eater (β=-.64, p<.05). Conclusions Toddlers displaying characteristics of a ‘good eater’ are not perceived as fussy, but these characteristics, especially higher WAZ, may be undesirable in the context of obesity prevention. Clinicians can promote food refusal as normal and even desirable in healthy young children.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
Background Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. Results In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. Conclusions NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the “arms race” with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.
Resumo:
High germination rates and rapid germination behavior in response to different environmental cues are traits that may be associated with invasiveness. Cat’s claw creeper (Dolichandra unguis-cati (L.) Lohmann (syn. Macfadyena unguis-cati (L.) Gentry), a Weed of National Significance has two forms, a long-pod (LP) form and a short-pod (SP) from. The LP form occurs in only a few localities in southeast Queensland while the SP form is widely distributed in Queensland and New South Wales. The aims of this investigation were: to evaluate whether there are significant differences in germination traits between the two forms of cat’s claw creeper; and if there are any significant differences, to find out whether the differences in germination can be related to prevalence and invasiveness levels for the two forms. Long pod and short pod seeds collected in 2009, 2010, 2011, 2012 and 2013 from various localities in Qld were germinated in growth chambers in early 2013. The growth chambers were set to 10/20 ºC, 15/25 ºC and 20/30 ºC temperature cycles. Seeds from 2009-2012 of either form did not germinate, while for the fresh seeds (2013), SP exhibited significantly higher total germination percentage and rates than LP. Assuming that the two forms were introduced in Australia at around the same period, these results could explain why SP is widely distributed (and therefore more invasive) in Qld and NSW while LP is only confined to a few localities in southeast Qld.
Resumo:
Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.