701 resultados para Vehicles submergibles -- Sistemes de control
Resumo:
The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.
Resumo:
A Switch-Mode Assisted Linear Amplifier (SMALA) combines the high quality of a linear amplifier required for audio applications with the high efficiency of a switch-mode amplifier. The careful choice of current sense point and switch placement allows a simple non-isolated hysteresis current controller for the switch-mode section. This paper explains the extension of the hysteresis current controller for the control of a three level Neutral Point Clamped (NPC) converter, with simulations as proof of concept. The NPC topology allows the use of lower voltage switches and lower switching frequencies to implement high power audio amplifiers using the SMALA topology.
Resumo:
Permanent magnet (PM) motors utilising ironless stator structures have been incorporated into a wide variety of applications where high efficiency and stringent torque control are required. With recent developments in magnetic materials, improved design strategies, and power outputs of up to 40kW, PM motors have become an attractive candidate for traction drives in electric and hybrid electric vehicles. However, due to their large air gaps and ironless stators these motors can have inductances as low as 2μH, imposing increased requirements on the converter to minimise current ripple. Multilevel converters with n cells can effectively increase the motor inductance by a factor of n2 and are an excellent approach to minimise the motor ripple current. Furthermore by indirectly coupling the outputs of each cell, improvements in converter input and cell ripple current can also be realised. This paper examines the issues in designing a high current indirectly coupled multilevel motor controller for an ironless BLDC traction drive and highlights the limitations of the common ladder core structure.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.
Resumo:
In the past years, there has been a surge in game controllers that allow players to play in a more physical, more natural way. In this paper we present an experimental study of the effect of gaming using these naturally mapped controllers on the player experience in a social setting. Results support the hypothesis that more naturally mapped controllers augment spatial presence. Furthermore, the results suggest that gaming with more naturally mapped controllers augment social presence for female players, but not for male players. However, gaming via naturally mapped controllers decreases perceived control and actual performance. Hence, users with high performance expectations might not benefit from gaming via naturally mapped controllers.
Resumo:
Information privacy is a critical success/failure factor in information technology supported healthcare (eHealth). eHealth systems utilise electronic health records (EHR) as the main source of information, thus, implementing appropriate privacy preserving methods for EHRs is vital for the proliferation of eHealth. Whilst information privacy may be a fundamental requirement for eHealth consumers, healthcare professionals demand non-restricted access to patient information for improved healthcare delivery, thus, creating an environment where stakeholder requirements are contradictory. Therefore, there is a need to achieve an appropriate balance of requirements in order to build successful eHealth systems. Towards achieving this balance, a new genre of eHealth systems called Accountable-eHealth (AeH) systems has been proposed. In this paper, an access control model for EHRs is presented that can be utilised by AeH systems to create information usage policies that fulfil both stakeholders’ requirements. These policies are used to accomplish the aforementioned balance of requirements creating a satisfactory eHealth environment for all stakeholders. The access control model is validated using a Web based prototype as a proof of concept.
Resumo:
The low-altitude aircraft inspection of powerlines, or other linear infrastructure networks, is emerging as an important application requiring specialised control technologies. Despite some recent advances in automated control related to this application, control of the underactuated aircraft vertical dynamics has not been completely achieved, especially in the presence of thermal disturbances. Rejection of thermal disturbances represents a key challenge to the control of inspection aircraft due to the underactuated nature of the dynamics and specified speed, altitude, and pitch constraints. This paper proposes a new vertical controller consisting of a backstepping elevator controller with feedforward-feedback throttle controller. The performance of our proposed approach is evaluated against two existing candidate controllers.
Resumo:
Objectives Hospital-acquired bloodstream infections are known to increase the risk of death and prolong hospital stay, but precise estimates of these two important outcomes from well-designed studies are rare, particularly for non-intensive care unit (ICU) patients. We aimed to calculate accurate estimates, which are vital for estimating the economic costs of hospital-acquired bloodstream infections.
Resumo:
This thesis establishes performance properties for approximate filters and controllers that are designed on the basis of approximate dynamic system representations. These performance properties provide a theoretical justification for the widespread application of approximate filters and controllers in the common situation where system models are not known with complete certainty. This research also provides useful tools for approximate filter designs, which are applied to hybrid filtering of uncertain nonlinear systems. As a contribution towards applications, this thesis also investigates air traffic separation control in the presence of measurement uncertainties.
Resumo:
Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow-balancing Starling response is diminished in both ventricles. The reliability of sensor and sensor-less based control systems which aim to control VAD flow based on preload have limitations and thus an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a compliant inflow cannula could potentially be used as a passive control system to prevent suction events in rotary left, right and biventricular support.
Resumo:
Introduction. The purpose of this chapter is to address the question raised in the chapter title. Specifically, how can models of motor control help us understand low back pain (LBP)? There are several classes of models that have been used in the past for studying spinal loading, stability, and risk of injury (see Reeves and Cholewicki (2003) for a review of past modeling approaches), but for the purpose of this chapter we will focus primarily on models used to assess motor control and its effect on spine behavior. This chapter consists of 4 sections. The first section discusses why a shift in modeling approaches is needed to study motor control issues. We will argue that the current approach for studying the spine system is limited and not well-suited for assessing motor control issues related to spine function and dysfunction. The second section will explore how models can be used to gain insight into how the central nervous system (CNS) controls the spine. This segues segue nicely into the next section that will address how models of motor control can be used in the diagnosis and treatment of LBP. Finally, the last section will deal with the issue of model verification and validity. This issue is important since modelling accuracy is critical for obtaining useful insight into the behavior of the system being studied. This chapter is not intended to be a critical review of the literature, but instead intended to capture some of the discussion raised during the 2009 Spinal Control Symposium, with some elaboration on certain issues. Readers interested in more details are referred to the cited publications.
Resumo:
A catalyst comprising a catalytic material supported on a support, characterized in that the support comprises particles predominantly having a max. particle size of less than 1000 nm and an aspect ratio of greater than, and the. catalytic material is mainly present in the form of discrete islands of catalytic material supported on the support, with a substantial proportion of the islands of catalytic material being sep. and isolated from other islands of catalytic material. The islands of catalytic material are sep. and isolated from other islands of catalytic material such that diffusion and growth of the islands of catalytic material at elevated temp. is minimized or avoided. The disclosure and examples pertain to emission control catalysts. [on SciFinder(R)]
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
This paper proposes a new controller for the excitation system to improve rotor angle stability. The proposed controller uses energy function to predict desired flux for the generator to achieve improved first swing stability and enhanced system damping. The controller is designed through predicting the desired value of flux for the future step of the system and then obtaining appropriate supplementary control input for the excitation system. The simulations are performed on Single-Machine-Infinite-Bus system and the results verify the efficiency of the controller. The proposed method facilitates the excitation system with a feasible and reliable controller for severe disturbances.