731 resultados para STRUCTURAL QUALITY
Resumo:
Existing secure software development principles tend to focus on coding vulnerabilities, such as buffer or integer overflows, that apply to individual program statements, or issues associated with the run-time environment, such as component isolation. Here we instead consider software security from the perspective of potential information flow through a program’s object-oriented module structure. In particular, we define a set of quantifiable "security metrics" which allow programmers to quickly and easily assess the overall security of a given source code program or object-oriented design. Although measuring quality attributes of object-oriented programs for properties such as maintainability and performance has been well-covered in the literature, metrics which measure the quality of information security have received little attention. Moreover, existing securityrelevant metrics assess a system either at a very high level, i.e., the whole system, or at a fine level of granularity, i.e., with respect to individual statements. These approaches make it hard and expensive to recognise a secure system from an early stage of development. Instead, our security metrics are based on well-established compositional properties of object-oriented programs (i.e., data encapsulation, cohesion, coupling, composition, extensibility, inheritance and design size), combined with data flow analysis principles that trace potential information flow between high- and low-security system variables. We first define a set of metrics to assess the security quality of a given object-oriented system based on its design artifacts, allowing defects to be detected at an early stage of development. We then extend these metrics to produce a second set applicable to object-oriented program source code. The resulting metrics make it easy to compare the relative security of functionallyequivalent system designs or source code programs so that, for instance, the security of two different revisions of the same system can be compared directly. This capability is further used to study the impact of specific refactoring rules on system security more generally, at both the design and code levels. By measuring the relative security of various programs refactored using different rules, we thus provide guidelines for the safe application of refactoring steps to security-critical programs. Finally, to make it easy and efficient to measure a system design or program’s security, we have also developed a stand-alone software tool which automatically analyses and measures the security of UML designs and Java program code. The tool’s capabilities are demonstrated by applying it to a number of security-critical system designs and Java programs. Notably, the validity of the metrics is demonstrated empirically through measurements that confirm our expectation that program security typically improves as bugs are fixed, but worsens as new functionality is added.
Resumo:
Traffic related emissions have been recognised as one of the main sources of air pollutants. In the research study discussed in this paper, variability of atmospheric total suspended particulate matter (TSP), polycyclic aromatic hydrocarbons (PAH) and heavy metal (HM) concentrations with traffic and land use characteristics during weekdays and weekends were investigated. Data required for the study were collected from a range of sampling sites to ensure a wide mix of traffic and land use characteristics. The analysis undertaken confirmed that zinc has the highest concentration in the atmospheric phase during weekends as well as weekdays. Although the use of leaded gasoline was discontinued a decade ago, lead was the second most commonly detected heavy metal. This is attributed to the association of previously generated lead with roadside soil and re-suspension to the atmosphere. Soil related particles are the primary source of TSP and manganese to the atmosphere. The analysis further revealed that traffic sources are dominant in gas phase PAHs compared to the other sources during weekdays. Land use related sources become important contributors to atmospheric PAHs during weekends when traffic sources are at their minimal levels.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Objective - this study examined the clinical utility and precision of routine screening for alcohol and other drug use among women attending a public antenatal service. Study design - a survey of clients and audit of clinical charts. Participants and setting - clients attending an antenatal clinic of a large tertiary hospital in Queensland, Australia, from October to December 2009. Measurements and findings - data were collected from two sources. First, 32 women who reported use of alcohol or other drugs during pregnancy at initial screening were then asked to complete a full substance use survey. Second, data were collected from charts of 349 new clients who attended the antenatal clinic during the study period. Both sensitivity (86%, 67%) and positive predictive value (100%, 92%) for alcohol and other drug use respectively, were high. Only 15% of surveyed women were uncomfortable about being screened for substance use in pregnancy, yet the chart audit revealed poor staff compliance. During the study period, 25% of clients were either not screened adequately or not at all. Key conclusions and implications for practise - despite recommended universal screening in pregnancy and the apparent acceptance by our participants, alcohol and other drug (A&OD) screening in the antenatal setting remains problematic. Investigation into the reasons behind, and ways to overcome, the low screening rate could improve health outcomes for mothers and children in this at-risk group. Targeted education and training for midwives may form part of the solution as these clinicians have a key role in implementing prevention and early intervention strategies.
Resumo:
A qualitative approach was used to explore the impact of acculturation stress on the marital relationships of South Sudanese refugees settled in Brisbane, Australia. Thirteen refugees, who were currently or previously married, participated in three gender specific focus groups. The perceived causes and possible solutions of conflict were thoroughly explored. Hypothetical scenarios were used to facilitate group discussion. Major issues causing conflict between couples were identified as: the management of finances and lack of family and social support. Several other areas of acculturation stress also emerged as factors associated with marital stress. There was a dissonance regarding the adherence to cultural gender roles. Freedom provided to women in Australia caused tension between the couples. Law enforcement officers were perceived as lacking cultural understanding and misinterpreting the couple distress. Finally, limited information provided to refugees pre and post migration was considered to hinder adjustment. The participants suggested a number of practical solutions to these issues which are potentially useful in guiding future refugee settlement programs.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
Using Gray and McNaughton’s (2000) revised Reinforcement Sensitivity Theory (r-RST), we examined the influence of personality on processing of words presented in gain-framed and loss-framed anti-speeding messages and how the processing biases associated with personality influenced message acceptance. The r-RST predicts that the nervous system regulates personality and that behaviour is dependent upon the activation of the Behavioural Activation System (BAS), activated by reward cues and the Fight-Flight-Freeze System (FFFS), activated by punishment cues. According to r-RST, individuals differ in the sensitivities of their BAS and FFFS (i.e., weak to strong), which in turn leads to stable patterns of behaviour in the presence of rewards and punishments, respectively. It was hypothesised that individual differences in personality (i.e., strength of the BAS and the FFFS) would influence the degree of both message processing (as measured by reaction time to previously viewed message words) and message acceptance (measured three ways by perceived message effectiveness, behavioural intentions, and attitudes). Specifically, it was anticipated that, individuals with a stronger BAS would process the words presented in the gain-frame messages faster than those with a weaker BAS and individuals with a stronger FFFS would process the words presented in the loss-frame messages faster than those with a weaker FFFS. Further, it was expected that greater processing (faster reaction times) would be associated with greater acceptance for that message. Driver licence holding students (N = 108) were recruited to view one of four anti-speeding messages (i.e., social gain-frame, social loss-frame, physical gain-frame, and physical loss-frame). A computerised lexical decision task assessed participants’ subsequent reaction times to message words, as an indicator of the extent of processing of the previously viewed message. Self-report measures assessed personality and the three message acceptance measures. As predicted, the degree of initial processing of the content of the social gain-framed message mediated the relationship between the reward sensitive trait and message effectiveness. Initial processing of the physical loss-framed message partially mediated the relationship between the punishment sensitive trait and both message effectiveness and behavioural intention ratings. These results show that reward sensitivity and punishment sensitivity traits influence cognitive processing of gain-framed and loss-framed message content, respectively, and subsequently, message effectiveness and behavioural intention ratings. Specifically, a range of road safety messages (i.e., gain-frame and loss-frame messages) could be designed which align with the processing biases associated with personality and which would target those individuals who are sensitive to rewards and those who are sensitive to punishments.
Resumo:
A 4-cylinder Ford 2701C test engine was used in this study to explore the impact of ethanol fumigation on gaseous and particle emission concentrations. The fumigation technique delivered vaporised ethanol into the intake manifold of the engine, using an injector, a pump and pressure regulator, a heat exchanger for vaporising ethanol and a separate fuel tank and lines. Gaseous (Nitric oxide (NO), Carbon monoxide (CO) and hydrocarbons (HC)) and particulate emissions (particle mass (PM2.5) and particle number) testing was conducted at intermediate speed (1700 rpm) using 4 load settings with ethanol substitution percentages ranging from 10-40 % (by energy). With ethanol fumigation, NO and PM2.5 emissions were reduced, whereas CO and HC emissions increased considerably and particle number emissions increased at most test settings. It was found that ethanol fumigation reduced the excess air factor for the engine and this led to increased emissions of CO and HC, but decreased emissions of NO. PM2.5 emissions were reduced with ethanol fumigation, as ethanol has a very low “sooting” tendency. This is due to the higher hydrogen-to-carbon ratio of this fuel, and also because ethanol does not contain aromatics, both of which are known soot precursors. The use of a diesel oxidation catalyst (as an after-treatment device) is recommended to achieve a reduction in the four pollutants that are currently regulated for compression ignition engines. The increase in particle number emissions with ethanol fumigation was due to the formation of volatile (organic) particles; consequently, using a diesel oxidation catalyst will also assist in reducing particle number emissions.
Resumo:
Nineteen studies met the inclusion criteria. A skin temperature reduction of 5–15 °C, in accordance with the recent PRICE (Protection, Rest, Ice, Compression and Elevation) guidelines, were achieved using cold air, ice massage, crushed ice, cryotherapy cuffs, ice pack, and cold water immersion. There is evidence supporting the use and effectiveness of thermal imaging in order to access skin temperature following the application of cryotherapy. Thermal imaging is a safe and non-invasive method of collecting skin temperature. Although further research is required, in terms of structuring specific guidelines and protocols, thermal imaging appears to be an accurate and reliable method of collecting skin temperature data following cryotherapy. Currently there is ambiguity regarding the optimal skin temperature reductions in a medical or sporting setting. However, this review highlights the ability of several different modalities of cryotherapy to reduce skin temperature.
Resumo:
Urban stormwater quality is multifaceted and the use of a limited number of factors to represent catchment characteristics may not be adequate to explain the complexity of water quality response to a rainfall event or site-to-site differences in stormwater quality modelling. This paper presents the outcomes of a research study which investigated the adequacy of using land use and impervious area fraction only, to represent catchment characteristics in urban stormwater quality modelling. The research outcomes confirmed the inadequacy of the use of these two parameters alone to represent urban catchment characteristics in stormwater quality prediction. Urban form also needs to be taken into consideration as it was found have an important impact on stormwater quality by influencing pollutant generation, build-up and wash-off. Urban form refers to characteristics related to an urban development such as road layout, spatial distribution of urban areas and urban design features.
Resumo:
Nekoite Ca3Si6O15•7H2O and okenite Ca10Si18O46•18H2O are both hydrated calcium silicates found respectively in contact metamorphosed limestone and in association with zeolites from the alteration of basalts. The minerals form two-Dimensional infinite sheets with other than six-membered rings with 3-, 4-, or 5-membered rings and 8-membered rings. The two minerals have been characterised by Raman, near-infrared and infrared spectroscopy. The Raman spectrum of nekoite is characterised by two sharp peaks at 1061 and 1092 cm-1 with bands of lesser intensity at 974, 994, 1023 and 1132 cm-1. The Raman spectrum of okenite shows an intense single Raman band at 1090 cm-1 with a shoulder band at 1075 cm-1.These bands are assigned to the SiO stretching vibrations of Si2O5 units. Raman water stretching bands of nekoite are observed at 3071, 3380, 3502 and 3567 cm-1. Raman spectrum of okenite shows water stretching bands at 3029, 3284, 3417, 3531 and 3607 cm-1. NIR spectra of the two minerals are subtly different inferring water with different hydrogen bond strengths. By using a Libowitzky empirical formula, hydrogen bond distances based upon these OH stretching vibrations. Two types of hydrogen bonds are distinguished: strong hydrogen bonds associated with structural water and weaker hydrogen bonds assigned to space filling water molecules.
Resumo:
This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.
Resumo:
This paper presents a behavioral car-following model based on empirical trajectory data that is able to reproduce the spontaneous formation and ensuing propagation of stop-and-go waves in congested traffic. By analyzing individual drivers’ car-following behavior throughout oscillation cycles it is found that this behavior is consistent across drivers and can be captured by a simple model. The statistical analysis of the model’s parameters reveals that there is a strong correlation between driver behavior before and during the oscillation, and that this correlation should not be ignored if one is interested in microscopic output. If macroscopic outputs are of interest, simulation results indicate that an existing model with fewer parameters can be used instead. This is shown for traffic oscillations caused by rubbernecking as observed in the US 101 NGSIM dataset. The same experiment is used to establish the relationship between rubbernecking behavior and the period of oscillations.
Resumo:
Serving as a powerful tool for extracting localized variations in non-stationary signals, applications of wavelet transforms (WTs) in traffic engineering have been introduced; however, lacking in some important theoretical fundamentals. In particular, there is little guidance provided on selecting an appropriate WT across potential transport applications. This research described in this paper contributes uniquely to the literature by first describing a numerical experiment to demonstrate the shortcomings of commonly-used data processing techniques in traffic engineering (i.e., averaging, moving averaging, second-order difference, oblique cumulative curve, and short-time Fourier transform). It then mathematically describes WT’s ability to detect singularities in traffic data. Next, selecting a suitable WT for a particular research topic in traffic engineering is discussed in detail by objectively and quantitatively comparing candidate wavelets’ performances using a numerical experiment. Finally, based on several case studies using both loop detector data and vehicle trajectories, it is shown that selecting a suitable wavelet largely depends on the specific research topic, and that the Mexican hat wavelet generally gives a satisfactory performance in detecting singularities in traffic and vehicular data.
Resumo:
The current investigation reports on diesel particulate matter emissions, with special interest in fine particles from the combustion of two base fuels. The base fuels selected were diesel fuel and marine gas oil (MGO). The experiments were conducted with a four-stroke, six-cylinder, direct injection diesel engine. The results showed that the fine particle number emissions measured by both SMPS and ELPI were higher with MGO compared to diesel fuel. It was observed that the fine particle number emissions with the two base fuels were quantitatively different but qualitatively similar. The gravimetric (mass basis) measurement also showed higher total particulate matter (TPM) emissions with the MGO. The smoke emissions, which were part of TPM, were also higher for the MGO. No significant changes in the mass flow rate of fuel and the brake-specific fuel consumption (BSFC) were observed between the two base fuels.