690 resultados para Relative construction
Resumo:
In the global construction context, the Best Value or Most Economically Advantageous Tender is becoming a widespread approach for contractor selection, as an alternative to other traditional awarding criteria such as the Lowest Price. In these multi-attribute tenders, the owner or auctioneer solicits proposals containing both a price bid and additional technical features. Once the proposals are received, each bidder's price bid is given an economic score according to a scoring rule, generally called an Economic Scoring Formula (ESF) and a technical score according to pre-specified criteria. Eventually, the contract is awarded to the bidder with the highest weighted overall score (economic + technical). However, Economic Scoring Formula selection by auctioneers is invariably and paradoxically a highly intuitive process in practice, involving few theoretical or empirical considerations, despite having being considered traditionally and mistakenly as objective, due to its mathematical nature. This paper provides a taxonomic classification of a wide variety of ESF and Abnormally Low Bid Criteria (ALBC) gathered in several countries with different tendering approaches. Practical implications concern the optimal design of price scoring rules in construction contract tenders, as well as future analyses of the effects of ESF and ALBC on competitive bidding behaviour.
Resumo:
The construction industry has long been considered to have unacceptably high injury and fatality rates. Previous research has shown that small construction companies sustain higher injury rates than large companies. However, despite the industry being dominated by a very large number of such small companies, little is known of their occupational health and safety (OHS) needs, practices and constraints. This paper takes a first step in aiming to identify the principal barriers that affect good OHS performance of small construction companies so that effective OHS practices can be developed to improve this in future. The contents of the literature are first summarised, in which three critical barriers to good OHS practice in small construction firms are proposed. They are : cost, time, lack of safety awareness and concern. The results of a questionnaire survey carried out with South East Queensland construction personnel are presented, which largely confirm what is suggested by the literature research and also succeed in providing an indication of their ranking in terms of importance and suggestions for overcoming these barriers. The research results provide a better understanding of the issues that restrict good OHS practice in small construction companies and potential measures for improvement.
The relative importance of luninal and systemic signals in the control of intestinal iron absorption
Resumo:
Purpose Traditional construction planning relies upon the critical path method (CPM) and bar charts. Both of these methods suffer from visualization and timing issues that could be addressed by 4D technology specifically geared to meet the needs of the construction industry. This paper proposed a new construction planning approach based on simulation by using a game engine. Design/methodology/approach A 4D automatic simulation tool was developed and a case study was carried out. The proposed tool was used to simulate and optimize the plans for the installation of a temporary platform for piling in a civil construction project in Hong Kong. The tool simulated the result of the construction process with three variables: 1) equipment, 2) site layout and 3) schedule. Through this, the construction team was able to repeatedly simulate a range of options. Findings The results indicate that the proposed approach can provide a user-friendly 4D simulation platform for the construction industry. The simulation can also identify the solution being sought by the construction team. The paper also identifies directions for further development of the 4D technology as an aid in construction planning and decision-making. Research limitations/implications The tests on the tool are limited to a single case study and further research is needed to test the use of game engines for construction planning in different construction projects to verify its effectiveness. Future research could also explore the use of alternative game engines and compare their performance and results. Originality/value The authors proposed the use of game engine to simulate the construction process based on resources, working space and construction schedule. The developed tool can be used by end-users without simulation experience.
Resumo:
Construction industry contributes significantly to environmental degradation, and governments in many countries which are endeavouring to address the situation. Malaysia is no exception. This paper examines the path towards green construction project delivery in Malaysia, focusing on current green policies and initiatives by governments. The historical waves in Malaysian approaches to tackling environmental issues are described, starting from the early 20th century, through the 1990s to the present, and the influence of these approaches on construction practices is analysed. Based on the findings of policy review, essential green construction practices aimed at mitigating the adverse effects of construction activities on the environment in Malaysia were identified. This paper paves the way for future studies in construction and sustainability in Malaysia, especially for the Southeast Asian region where sustainability practices are urgently needed.
Resumo:
With the current emerging development pattern in Malaysia, Malaysian government has enthusiastically promoted green procurement approach that will help the construction project being green. Previous studies highlighted that the concept of green procurement is still very new to the Malaysian construction industry, and this increases the needs for further research in this area. This paper addresses the needs of guidelines for stakeholders to procure environmentally-friendly construction. Currently, there is a limited practical guideline for stakeholders to procure green projects. This paper discusses the progress to date of a research project aimed at developing a green procurement framework for construction projects in the Malaysian construction industry. This framework will guide the stakeholders to plan the green procurement implementation to procure a construction projects. Through literature and expert opinion, this paper explores the list of green practices within procurement practices which becomes the basis to develop a survey instrument that will be used in the later part of this study. The paper will shed useful information for construction researchers and practitioners in exploring the green procurement concept for construction industry in Malaysia.
Resumo:
Construction projects have a negative impact on the environment. As Malaysia is planning more construction projects to cater for its current and future development needs, practitioners are urged to undertake greener approaches to construction. One of the efforts is the introduction of green procurement, which is promoted under the Malaysian Government’s MyHijau initiative. Construction procurement is recognised as a tool to shift the construction business into a greener industry. However, the implementation of green procurement in Malaysia is still in its infancy and faces a number of challenges, such as the lack of knowledge. A significant gap has been found between policy formulation and actual project delivery as there are no practical guidelines for stakeholders to procure environmental-friendly construction projects. To address this problem, the present research (as part of an ongoing PhD project) aims to develop a green procurement framework that guides stakeholders in procuring green projects in Malaysia. This article highlights the concept of green procurement in Malaysia, the work carried out to date to achieve the research objectives and the preliminary framework that has been established. It is hoped that this research will help academics and practitioners to further explore the potential of green procurement to improve sustainability in the current construction industry practices.
Resumo:
Employees’ safety climate perceptions dictate their safety behavior because individuals act based on their perceptions of reality. Extensive empirical research in applied psychology has confirmed this relationship. However, rare efforts have been made to investigate the factors contributing to a favorable safety climate in construction research. As an initial effort to address the knowledge gap, this paper examines factors contributing to a psychological safety climate, an operationalization of a safety climate at the individual level, and, hence, the basic element of a safety climate at higher levels. A multiperspective framework of contributors to a psychological safety climate is estimated by a structural equation modeling technique using individual questionnaire responses from a random sample of construction project personnel. The results inform management of three routes to psychological safety climate: a client’s proactive involvement in safety management, a workforce-friendly workplace created by the project team, and transformational supervisors’ communication about safety matters with the workforce. This paper contributes to the field of construction engineering and management by highlighting a broader contextual influence in a systematic formation of psychological safety climate perceptions.
Resumo:
The construction industry accounts for a significant portion of the material consumption of our industrialised societies. That material consumption comes at an environmental cost, and when buildings and infrastructure projects are demolished and discarded, after their useful lifespan, that environmental cost remains largely unrecovered. The expected operational lifespan of modern buildings has become disturbingly short as buildings are replaced for reasons of changing cultural expectations, style, serviceability, locational obsolescence and economic viability. The same buildings however are not always physically or structurally obsolete; the materials and components within them are very often still completely serviceable. While there is some activity in the area of recycling of selected construction materials, such as steel and concrete, this is almost always in the form of down cycling or reprocessing. Very little of this material and component resource is reuse in a way that more effectively captures its potential. One significant impediment to such reuse is that buildings are not designed in a way that facilitates easy recovery of materials and components; they are designed and built for speed of construction and quick economic returns, with little or no consideration of the longer term consequences of their physical matter. This research project explores the potential for the recovery of materials and components if buildings were designed for such future recovery; a strategy of design for disassembly. This is not a new design philosophy; design for disassembly is well understood in product design and industrial design. There are also some architectural examples of design for disassembly; however these are specialist examples and there is no significant attempt to implement the strategy in the main stream construction industry. This paper presents research into the analysis of the embodied energy in buildings, highlighting its significance in comparison with operational energy. Analysis at material, component, and whole-of-building levels shows the potential benefits of strategically designing buildings for future disassembly to recover this embodied energy. Careful consideration at the early design stage can result in the deconstruction of significant portions of buildings and the recovery of their potential through higher order reuse and upcycling.
Resumo:
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Resumo:
This workshop comprised a diverse group of African construction experts, ranging far wider than RSA. Each of the attendees had attended the annual ASOCSA conference and was additionally provided with a short workshop pre-brief. The aim was to develop a view of their 15-20 year vision of construction improvement in RSA and the steps necessary to get there. These included sociological, structural, technical and process changes. Whilst some suggestions are significantly challenging, none are impossible, given sufficient collaboration between government, industry, academia and NGOs. The highest priority projects (more properly, programmes) were identified and further explored. These are: 1. Information Hub (‘Open Africa’). Aim – to utilise emerging trends in Open Data to provide a force for African unity. 2. Workforce Development. Aim – to rebuild a competent, skilled construction industry for RSA projects and for export. 3. Modular DIY Building. Aim – to accelerate the development of sustainable, cost-efficient and desirable housing for African economic immigrants and others living in makeshift and slum dwellings. Open Data is a maturing theme in different cities and governments around the world and the workshop attendees were very keen to seize such a possibility to assist in developing an environment where Africans can share information and foster collaboration. It is likely that NGOs might be keen to follow up such an initiative. There are significant developments taking place around the world in the construction sector currently, with comparatively large savings being made for taxpayers (20% plus in the UK). Not all of these changes would be easy to transplant to RSA (even more so to much of the rest of Africa). Workforce development was a keen plea amongst the attendees, who seemed concerned that expertise has leaked away and is not being replaced with sufficient intensity. It is possible today to develop modular buildings in such a way that even unskilled residents can assist in their construction, and even their appropriate design. These buildings can be sited nearly autonomously from infrastructures, thus relieving the tensions on cities and townships, whilst providing humane accommodation for the economically disadvantaged. Development of suitable solutions could either be conducted with other similarly stressed countries or developed in-country and the expertise exported. Finally, it should be pointed out that this was very much a first step. Any opportunity to collaborate from an Australian, QUT or CIB perspective would be welcomed, whilst acknowledging that the leading roles belong to RSA, CSIR, NRF, ASOCSA and the University of KwaZulu-Natal.
Resumo:
The Australian construction industry is often criticized for its comparatively low productivity. The most significant future productivity gains are predicted to arise from improvement in the firm’s project management. Information Communication Technologies (ICTs) are thought to offer such improvement. ICT adoption is particularly poor among Small and Medium Enterprises (SMEs). Existing studies provide only a general overview of adoption and diffusion of ICTs in SMEs, with no previous research measuring their readiness to adopt ICT. This paper outlines a theoretical approach to address this gap, exploring how to improve ICT adoption in Australian construction SMEs. A review of literature is undertaken to address the research question ‘What is the best conceptual approach to understanding ICT adoption in SMEs?’ The results emphasize the efficacy of a novel Technology Readiness and Acceptance Model (TRAM) to assess SMEs’ ICT implementation readiness. The proposed model consists of four major constructs to measure readiness comprising: - (1) optimism, - (2) innovativeness, - (3) discomfort and - (4) insecurity; two major constructs to measure technological acceptance comprising: - (1) perceived ease of use and - (2) perceived usefulness; and two extension variables comprising: - (1) self-efficacy and - (2) facilitating conditions. A limitation is that the performance of the conceptual model is yet to be tested empirically. Such research is planned in the coming year by the authors.
Resumo:
Workplace stress has been an increasing concern in the construction industry. Workers are working longer hours and construction managers’ responsibilities are becoming more complex and complicated due to reduced resources and widespread stakeholder involvements. These additional pressures potentially trigger workplace stress and impact on project performance. The purpose of this study is to examine and advance understanding of stress and its impact relationships that support holistic and strategic stress management. 17 key stress sources are identified with their impact relationships on different stress types examined. Based on the research findings, this paper concludes with a Stressor-Stress-Performance relationships map.
Resumo:
A computed tomography number to relative electron density (CT-RED) calibration is performed when commissioning a radiotherapy CT scanner by imaging a calibration phantom with inserts of specified RED and recording the CT number displayed. In this work, CT-RED calibrations were generated using several commercially available phantoms to observe the effect of phantom geometry on conversion to electron density and, ultimately, the dose calculation in a treatment planning system. Using an anthropomorphic phantom as a gold standard, the CT number of a material was found to depend strongly on the amount and type of scattering material surrounding the volume of interest, with the largest variation observed for the highest density material tested, cortical bone. Cortical bone gave a maximum CT number difference of 1,110 when a cylindrical insert of diameter 28 mm scanned free in air was compared to that in the form of a 30 × 30 cm2 slab. The effect of using each CT-RED calibration on planned dose to a patient was quantified using a commercially available treatment planning system. When all calibrations were compared to the anthropomorphic calibration, the largest percentage dose difference was 4.2 % which occurred when the CT-RED calibration curve was acquired with heterogeneity inserts removed from the phantom and scanned free in air. The maximum dose difference observed between two dedicated CT-RED phantoms was ±2.1 %. A phantom that is to be used for CT-RED calibrations must have sufficient water equivalent scattering material surrounding the heterogeneous objects that are to be used for calibration.
Resumo:
The Global Financial Crisis (GFC) in 2008 had a significant impact on the world economy and the construction industry was no exception. This study investigates the major impacts of the 2008 GFC on the Australian construction industry and, in particular how the Australian construction contractors responded to the economic downturn. A total of 35 senior managers from the Top 100 Australian construction companies were interviewed. The findings indicate that construction companies, particularly the large ones were not affected in any significant way but are expecting some difficult financial times over the next few years and are taking actions to minimize the upcoming adverse impacts. The most common strategy adopted by Australian construction contractors is to concentrate on core business while avoiding aimless bidding. Similarly, great focus is placed on retaining human resources in order to maintain the skill set so that the company can respond quickly when market conditions improves. The research findings will provide construction contractors with insights on how to establish and sustain competitive advantages during economic slowdown and become more resilient in the future.