649 resultados para Network load


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting models. The key ingredient of the success of this simple model is the effective use of lagged information by allowing for interaction between seasonal patterns and intra-day dependencies. Although the model is built using data for the Queensland region of Australia, the method is completely generic and applicable to any load forecasting problem. The model’s forecasting ability is assessed by means of the mean absolute percentage error (MAPE). For day-ahead forecast, the MAPE returned by the model over a period of 11 years is an impressive 1.36%. The forecast accuracy of the model is compared with a number of benchmarks including three popular alternatives and one industrial standard reported by the Australia Energy Market Operator (AEMO). The performance of the model developed in this paper is superior to all benchmarks and outperforms the AEMO forecasts by about a third in terms of the MAPE criterion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cool roof coatings have a beneficial impact on reducing the heat load of a range of building types, resulting in reduced cooling energy loads. This study seeks to understand the extent to which cool roof coatings could be used as a residential demand side management (DSM) strategy for retrofitting existing housing in a constrained network area in tropical Australia where peak electrical demand is heavily influenced by residential cooling loads. In particular this study seeks to determine whether simulation software used for building regulation purposes can provide networks with the ‘impact certainty’ required by their DSM principles. The building simulation method is supported by a field experiment. Both numerical and experimental data confirm reductions in total consumption (kWh) and energy demand (kW). The nature of the regulated simulation software, combined with the diverse nature of residential buildings and their patterns of occupancy, however, mean that simulated results cannot be extrapolated to quantify benefits to a broader distribution network. The study suggests that building data gained from regulatory simulations could be a useful guide for potential impacts of widespread application of cool roof coatings in this region. The practical realization of these positive impacts, however, would require changes to the current business model for the evaluation of DSM strategies. The study provides seven key recommendations that encourage distribution networks to think beyond their infrastructure boundaries, recognising that the broader energy system also includes buildings, appliances and people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the types of support that teachers are accessing through the Social Network Site (SNS) 'Facebook'. It describes six ways in which teachers support one another within online groups. It presents evidence from a study of a large, open group of teachers online over a twelve week period, repeated with multiple groups a year later over a one week period. The findings suggest that large open groups in SNSs can be a useful source of pragmatic advice for teachers but that these groups are rarely a place for reflection on or feedback about teaching practice.