631 resultados para interaction learning
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (14)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (11)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (14)
- Digital Peer Publishing (8)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (2)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (3)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (2)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (2)
- Open University Netherlands (6)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (9)
- Queensland University of Technology - ePrints Archive (631)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (8)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- Scielo España (1)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (12)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (11)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- WestminsterResearch - UK (8)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Machine learning has become a valuable tool for detecting and preventing malicious activity. However, as more applications employ machine learning techniques in adversarial decision-making situations, increasingly powerful attacks become possible against machine learning systems. In this paper, we present three broad research directions towards the end of developing truly secure learning. First, we suggest that finding bounds on adversarial influence is important to understand the limits of what an attacker can and cannot do to a learning system. Second, we investigate the value of adversarial capabilities-the success of an attack depends largely on what types of information and influence the attacker has. Finally, we propose directions in technologies for secure learning and suggest lines of investigation into secure techniques for learning in adversarial environments. We intend this paper to foster discussion about the security of machine learning, and we believe that the research directions we propose represent the most important directions to pursue in the quest for secure learning.