732 resultados para Urban Representation
Resumo:
Urban agriculture refers to the production of food in urban and peri-urban spaces. It can contribute positively to health and food security of a city, while also reducing ‘food miles.’ It takes on many forms, from the large and organised community garden, to the small and discrete backyard or balcony. This study focuses on small-scale food production in the form of residential gardening for home or personal use. We explore opportunities to support people’s engagement in urban agriculture via human-computer interaction design. This research presents the findings and HCI design insights from our study of residential gardeners in Brisbane, Australia. By exploring their understanding of gardening practice with a human-centred design approach, we present six key themes, highlighting opportunities and challenges relating to available time and space; the process of learning and experimentation; and the role of existing online platforms to support gardening practice. Finally we discuss the overarching theme of shared knowledge, and how HCI could improve community engagement and gardening practice.
Resumo:
This paper presents a series of studies on situated interfaces for community engagement. Firstly, we identify five recurring design challenges as well as four common strategies used to overcome them. We then assess the effectiveness of these strategies through field studies with public polling interfaces. We developed two very different polling interfaces in the form of (1) a web application running on an iPad mounted on a stand, allowing one vote at a time, and (2) a playful full-body interaction application for a large urban screen allowing concurrent participation. We deployed both interfaces in an urban precinct with high pedestrian traffic and equipped with a large urban screen. Analysing discoverability and learnability of each scenario, we derive insights regarding effective ways of blending community engagement interfaces into the built environment, while attracting the attention of passers-by and communicating the results of civic participation.
Resumo:
- Objective To investigate if parental disapproval of alcohol use accounts for differences in adolescent alcohol use across regional and urban communities. - Design Secondary data analysis of grade-level stratified data from a random sample of schools. - Setting High schools in Victoria, Australia. - Participants A random sample of 10273 adolescents from Grade 7 (mean age=12.51 years), 9 (14.46 years) and 11 (16.42 years). - Main outcome measures The key independent variables were parental disapproval of adolescent alcohol use and regionality (regional/ urban), and the dependent variable was past 30 days alcohol use. - Results After adjusting for potential confounders, adolescents in regional areas were more likely to use alcohol in the past 30 days (OR=1.83, 1.44 and 1.37 for Grades 7, 9 and 11, respectively, P<0.05), and their parents have a lower level of disapproval of their alcohol use (b=-0.12, -0.15 and -0.19 for Grades 7, 9 and 11, respectively, P<0.001). Bootstrapping analyses suggested that 8.37%, 23.30% and 39.22% of the effect of regionality on adolescent alcohol use was mediated by parental disapproval of alcohol use for Grades 7, 9 and 11 participants respectively (P<0.05). - Conclusions Adolescents in urban areas had a lower risk of alcohol use compared with their regional counterparts, and differences in parental disapproval of alcohol use contributed to this difference.
Resumo:
Background Despite the burden of acute respiratory illnesses (ARI) among Aboriginal and Torres Strait Islander children being a substantial cause of childhood morbidity and associated costs to families, communities and the health system, data on disease burden in urban children are lacking. Consequently evidence-based decision-making, data management guidelines, health resourcing for primary health care services and prevention strategies are lacking. This study aims to comprehensively describe the epidemiology, impact and outcomes of ARI in urban Aboriginal and Torres Strait Islander children (hereafter referred to as Indigenous) in the greater Brisbane area. Methods/design A prospective cohort study of Indigenous children aged less than five years registered with a primary health care service in Northern Brisbane, Queensland, Australia. Children are recruited at time of presentation to the service for any reason. Demographic, epidemiological, risk factor, microbiological, economic and clinical data are collected at enrolment. Enrolled children are followed for 12 months during which time ARI events, changes in child characteristics over time and monthly nasal swabs are collected. Children who develop an ARI with cough as a symptom during the study period are more intensely followed-up for 28(±3) days including weekly nasal swabs and parent completed cough diary cards. Children with persistent cough at day 28 post-ARI are reviewed by a paediatrician. Discussion Our study will be one of the first to comprehensively evaluate the natural history, epidemiology, aetiology, economic impact and outcomes of ARIs in this population. The results will inform studies for the development of evidence-based guidelines to improve the early detection, prevention and management of chronic cough and setting of priorities in children during and after ARI.
Resumo:
Urbanisation significantly changes the characteristics of a catchment as natural areas are transformed to impervious surfaces such as roads, roofs and parking lots. The increased fraction of impervious surfaces leads to changes to the stormwater runoff characteristics, whilst a variety of anthropogenic activities common to urban areas generate a range of pollutants such as nutrients, solids and organic matter. These pollutants accumulate on catchment surfaces and are removed and trans- ported by stormwater runoff and thereby contribute pollutant loads to receiving waters. In summary, urbanisation influences the stormwater characteristics of a catchment, including hydrology and water quality. Due to the growing recognition that stormwater pollution is a significant environmental problem, the implementation of mitigation strategies to improve the quality of stormwater runoff is becoming increasingly common in urban areas. A scientifically robust stormwater quality treatment strategy is an essential requirement for effective urban stormwater management. The efficient design of treatment systems is closely dependent on the state of knowledge in relation to the primary factors influencing stormwater quality. In this regard, stormwater modelling outcomes provide designers with important guidance and datasets which significantly underpin the design of effective stormwater treatment systems. Therefore, the accuracy of modelling approaches and the reliability modelling outcomes are of particular concern. This book discusses the inherent complexity and key characteristics in the areas of urban hydrology and stormwater quality, based on the influence exerted by a range of rainfall and catchment characteristics. A comprehensive field sampling and testing programme in relation to pollutant build-up, an urban catchment monitoring programme in relation to stormwater quality and the outcomes from advanced statistical analyses provided the platform for the knowledge creation. Two case studies and two real-world applications are discussed to illustrate the translation of the knowledge created to practical use in relation to the role of rainfall and catchment characteristics on urban stormwater quality. An innovative rainfall classification based on stormwater quality was developed to support the effective and scientifically robust design of stormwater treatment systems. Underpinned by the rainfall classification methodology, a reliable approach for design rainfall selection is proposed in order to optimise stormwater treatment based on both, stormwater quality and quantity. This is a paradigm shift from the common approach where stormwater treatment systems are designed based solely on stormwater quantity data. Additionally, how pollutant build-up and stormwater runoff quality vary with a range of catchment characteristics was also investigated. Based on the study out- comes, it can be concluded that the use of only a limited number of catchment parameters such as land use and impervious surface percentage, as it is the case in current modelling approaches, could result in appreciable error in water quality estimation. Influential factors which should be incorporated into modelling in relation to catchment characteristics, should also include urban form and impervious surface area distribution. The knowledge created through the research investigations discussed in this monograph is expected to make a significant contribution to engineering practice such as hydrologic and stormwater quality modelling, stormwater treatment design and urban planning, as the study outcomes provide practical approaches and recommendations for urban stormwater quality enhancement. Furthermore, this monograph also demonstrates how fundamental knowledge of stormwater quality processes can be translated to provide guidance on engineering practice, the comprehensive application of multivariate data analyses techniques and a paradigm on integrative use of computer models and mathematical models to derive practical outcomes.
Resumo:
This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.
Resumo:
Variability in the pollutant wash-off process is a concept which needs to be understood in-depth in order to better assess the outcomes of stormwater quality models, and thereby strengthen stormwater pollution mitigation strategies. Current knowledge about the wash-off process does not extend to a clear understanding of the influence of the initially available pollutant build-up on the variability of the pollutant wash-off load and composition. Consequently, pollutant wash-off process variability is poorly characterised in stormwater quality models, which can result in inaccurate stormwater quality predictions. Mathematical simulation of particulate wash-off from three urban road surfaces confirmed that the wash-off load of particle size fractions <150µm and >150µm after a storm event vary with the build-up of the respective particle size fractions available at the beginning of the storm event. Furthermore, pollutant load and composition associated with the initially available build-up of <150µm particles predominantly influence the variability in washed-off pollutant load and composition. The influence of the build-up of pollutants associated with >150µm particles on wash-off process variability is significant only for relatively shorter duration storm events.
Resumo:
There is an increased concern about airborne particles not only because of their environmental effects, but also due to their potential adverse health effects on humans, especially children. Despite the growing evidence of airborne particles having an impact on children’s health, there have been limited studies investigating the long term health effects as well as the chemical composition of ambient air which further helps in determining their toxicity. Therefore, a systematic study on the chemical composition of air in school environment has been carried out in Brisbane, which is known as “Ultrafine Particles from Traffic Emissions on Children’s Health” (UPTECH). This study is also a part of the larger project focusing on analysis of the chemical composition of ambient air, as well as source apportionment and the quantification of ambient concentrations of organic pollutants in the vicinity of schools. However, this particular paper presents some of the results on concentration of different Volatile Organic Compounds in both indoor and outdoor location from different schools. The database consisted of 750 samples (500 outdoor and 250 indoor) collected for VOCs at 25 different schools. The sampling and analysis were conducted following the standard methods. A total of 90 individual VOCs were identified from the schools studied. Compounds such as toluene, acetic acid, nonanal, benzaldehyde, 2- ethyl 1- hexanol, limonene were the most common in indoors whereas isopentane, toluene, hexane, heptane were dominant in outdoors. The indoor/ outdoor ratio of average sum of VOCs were found to be more than one in most of the schools indicating that there might be additional indoor sources along with the outdoor air in those schools. However, further expansion of the study in relation to source apportionment, correlating with traffic and meteorological data is in progress.
Resumo:
On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators, and; (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×103 part cm-3), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×1012 part min-1, that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible.
Resumo:
A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (-1.2 x 103 cm-3 | +1.6 x 103 cm-3) and 4.4 x 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.
Resumo:
Long term exposure to organic pollutants, both inside and outside school buildings may affect children’s health and influence their learning performance. Since children spend significant amount of time in school, air quality, especially in classrooms plays a key role in determining the health risks associated with exposure at schools. Within this context, the present study investigated the ambient concentrations of Volatile Organic Compounds (VOCs) in 25 primary schools in Brisbane with the aim to quantify the indoor and outdoor VOCs concentrations, identify VOCs sources and their contribution, and based on these; propose mitigation measures to reduce VOCs exposure in schools. One of the most important findings is the occurrence of indoor sources, indicated by the I/O ratio >1 in 19 schools. Principal Component Analysis with Varimax rotation was used to identify common sources of VOCs and source contribution was calculated using an Absolute Principal Component Scores technique. The result showed that outdoor 47% of VOCs were contributed by petrol vehicle exhaust but the overall cleaning products had the highest contribution of 41% indoors followed by air fresheners and art and craft activities. These findings point to the need for a range of basic precautions during the selection, use and storage of cleaning products and materials to reduce the risk from these sources.
Resumo:
Exposure to atmospheric ultrafine particles (UFPs, D<100 nm) has been an increasingly concern because of their potential impact one health. Motor vehicle emissions are considered as one of the major source of UFPin urban airshed, as the combustion of both petrol and diesel engine leads to emission of particles which are predominantly in this size range (Ban-Weiss et al, 2010; Morawska et al, 2008). New particle formations (NPFs) and major facilities such as airport or seaport has also been identified as major sources of UFPs in urban airshed (Cheung et al, 2010; González et al, 2011; Mazaheri et al, 2013). However, contribution of those urban sources to ambient UFP concentrations has not been comprehensively characterized.
Resumo:
The Air Pollution Model and Chemical Transport Model (TAPM-CTM) framework has been tested and applied originally in Sydney to quantify particle and gaseous concentration (Cope et al, 2014). However, the model performance had not been tested in the south-eastern Queensland region (SEQR), Australia.
Resumo:
As a precursor to the 2014 G20 Leaders’ Summit held in Brisbane, Australia, the Queensland Government sponsored a program of G20 Cultural Celebrations, designed to showcase the Summit’s host city. The cultural program’s signature event was the Colour Me Brisbane festival, a two-week ‘citywide interactive light and projection installations’ festival that was originally slated to run from 24 October to 9 November, but which was extended due to popular demand to conclude with the G20 Summit itself on 16 November. The Colour Me Brisbane festival comprised a series projection displays that promoted visions of the city’s past, present, and future at landmark sites and iconic buildings throughout the city’s central business district and thus transformed key buildings into forms of media architecture. In some instances the media architecture installations were interactive, allowing the public to control aspects of the projections through a computer interface situated in front of the building; however, the majority of the installations were not interactive in this sense. The festival was supported by a website that included information regarding the different visual and interactive displays and links to social media to support public discussion regarding the festival (Queensland Government 2014). Festival-goers were also encouraged to follow a walking-tour map of the projection sites that would take them on a 2.5 kilometre walk from Brisbane’s cultural precinct, through the city centre, concluding at parliament house. In this paper, we investigate the Colour Me Brisbane festival and the broader G20 Cultural Celebrations as a form of strategic placemaking—designed, on the one hand, to promote Brisbane as a safe, open, and accessible city in line with the City Council’s plan to position Brisbane as a ‘New World City’ (Brisbane City Council 2014). On the other hand, it was deployed to counteract growing local concerns and tensions over the disruptive and politicised nature of the G20 Summit by engaging the public with the city prior to the heightened security and mobility restrictions of the Summit weekend. Harnessing perspectives from media architecture (Brynskov et al. 2013), urban imaginaries (Cinar & Bender 2007), and social media analysis, we take a critical approach to analysing the government-sponsored projections, which literally projected the city onto itself, and public responses to them via the official, and heavily promoted, social media hashtags (#colourmebrisbane and #g20cultural). Our critical framework extends the concepts of urban phantasmagoria and urban imaginaries into the emerging field of media architecture to scrutinise its potential for increased political and civic engagement. Walter Benjamin’s concept of phantasmagoria (Cohen 1989; Duarte, Firmino, & Crestani 2014) provides an understanding of urban space as spectacular projection, implicated in commodity and techno-culture. The concept of urban imaginaries (Cinar & Bender 2007; Kelley 2013)—that is, the ways in which citizens’ experiences of urban environments are transformed into symbolic representations through the use of imagination—similarly provides a useful framing device in thinking about the Colour Me Brisbane projections and their relation to the construction of place. Employing these critical frames enables us to examine the ways in which the installations open up the potential for multiple urban imaginaries—in the sense that they encourage civic engagement via a tangible and imaginative experience of urban space—while, at the same time, supporting a particular vision and way of experiencing the city, promoting a commodified, sanctioned form of urban imaginary. This paper aims to dissect the urban imaginaries intrinsic to the Colour Me Brisbane projections and to examine how those imaginaries were strategically deployed as place-making schemes that choreograph reflections about and engagement with the city.
Resumo:
Aboriginal and Torres Strait Islander people experience higher levels of psychological distress and mental ill health than their non-Indigenous counterparts, but underuse mental health services. Interventions are required to address the structural and functional access barriers that cause this underuse. In 2012, the Southern Queensland Centre of Excellence in Aboriginal and Torres Strait Islander Primary Health Care employed a psychologist and a social worker to integrate mental health care into its primary health care services. This research study examines the impact of this innovation.