695 resultados para Market design
Resumo:
This study investigates the application of two advanced optimization methods for solving active flow control (AFC) device shape design problem and compares their optimization efficiency in terms of computational cost and design quality. The first optimization method uses hierarchical asynchronous parallel multi-objective evolutionary algorithm and the second uses hybridized evolutionary algorithm with Nash-Game strategies (Hybrid-Game). Both optimization methods are based on a canonical evolution strategy and incorporate the concepts of parallel computing and asynchronous evaluation. One type of AFC device named shock control bump (SCB) is considered and applied to a natural laminar flow (NLF) aerofoil. The concept of SCB is used to decelerate supersonic flow on suction/pressure side of transonic aerofoil that leads to a delay of shock occurrence. Such active flow technique reduces total drag at transonic speeds which is of special interest to commercial aircraft. Numerical results show that the Hybrid-Game helps an EA to accelerate optimization process. From the practical point of view, applying a SCB on the suction and pressure sides significantly reduces transonic total drag and improves lift-to-drag (L/D) value when compared to the baseline design.
Resumo:
Lean product design has the potential to reduce the overall product development time and cost and can improve the quality of a product. However, it has been found that no or little work has been carried out to provide an integrated framework of "lean design" and to quantitatively evaluate the effectiveness of lean practices/principles in product development process. This research proposed an integrated framework for lean design process and developed a dynamic decision making tool based on Methods Time Measurement (MTM) approach for assessing the impact of lean design on the assembly process. The proposed integrated lean framework demonstrates the lean processes to be followed in the product design and assembly process in order to achieve overall leanness. The decision tool consists of a central database, the lean design guidelines, and MTM analysis. Microsoft Access and C# are utilized to develop the user interface to use the MTM analysis as decision making tool. MTM based dynamic tool is capable of estimating the assembly time, costs of parts and labour of various alternatives of a design and hence is able to achieve optimum design. A case study is conducted to test and validate the functionality of the MTM Analysis as well as to verify the lean guidelines proposed for product development.
Resumo:
Proceedings of the Design Theme Postgraduate Student Conference, held 10th September 2008 at Queensland University of Technology.
Resumo:
Hybrid system representations have been applied to many challenging modeling situations. In these hybrid system representations, a mixture of continuous and discrete states is used to capture the dominating behavioural features of a nonlinear, possible uncertain, model under approximation. Unfortunately, the problem of how to best design a suitable hybrid system model has not yet been fully addressed. This paper proposes a new joint state measurement relative entropy rate based approach for this design purpose. Design examples and simulation studies are presented which highlight the benefits of our proposed design approaches.
Resumo:
Background There has been increasing interest in assessing the impacts of temperature on mortality. However, few studies have used a case–crossover design to examine non-linear and distributed lag effects of temperature on mortality. Additionally, little evidence is available on the temperature-mortality relationship in China, or what temperature measure is the best predictor of mortality. Objectives To use a distributed lag non-linear model (DLNM) as a part of case–crossover design. To examine the non-linear and distributed lag effects of temperature on mortality in Tianjin, China. To explore which temperature measure is the best predictor of mortality; Methods: The DLNM was applied to a case¬−crossover design to assess the non-linear and delayed effects of temperatures (maximum, mean and minimum) on deaths (non-accidental, cardiopulmonary, cardiovascular and respiratory). Results A U-shaped relationship was consistently found between temperature and mortality. Cold effects (significantly increased mortality associated with low temperatures) were delayed by 3 days, and persisted for 10 days. Hot effects (significantly increased mortality associated with high temperatures) were acute and lasted for three days, and were followed by mortality displacement for non-accidental, cardiopulmonary, and cardiovascular deaths. Mean temperature was a better predictor of mortality (based on model fit) than maximum or minimum temperature. Conclusions In Tianjin, extreme cold and hot temperatures increased the risk of mortality. Results suggest that the effects of cold last longer than the effects of heat. It is possible to combine the case−crossover design with DLNMs. This allows the case−crossover design to flexibly estimate the non-linear and delayed effects of temperature (or air pollution) whilst controlling for season.
Resumo:
Background Providing ongoing family centred support is an integral part of childhood cancer care. For families living in regional and remote areas, opportunities to receive specialist support are limited by the availability of health care professionals and accessibility, which is often reduced due to distance, time, cost and transport. The primary aim of this work is to investigate the cost-effectiveness of videotelephony to support regional and remote families returning home for the first time with a child newly diagnosed with cancer Methods/design We will recruit 162 paediatric oncology patients and their families to a single centre randomised controlled trial. Patients from regional and remote areas, classified by Accessibility/Remoteness Index of Australia (ARIA+) greater than 0.2, will be randomised to a videotelephone support intervention or a usual support control group. Metropolitan families (ARIA+ ≤ 0.2) will be recruited as an additional usual support control group. Families allocated to the videotelephone support intervention will have access to usual support plus education, communication, counselling and monitoring with specialist multidisciplinary team members via a videotelephone service for a 12-week period following first discharge home. Families in the usual support control group will receive standard care i.e., specialist multidisciplinary team members provide support either face-to-face during inpatient stays, outpatient clinic visits or home visits, or via telephone for families who live far away from the hospital. The primary outcome measure is parental health related quality of life as measured using the Medical Outcome Survey (MOS) Short Form SF-12 measured at baseline, 4 weeks, 8 weeks and 12 weeks. The secondary outcome measures are: parental informational and emotional support; parental perceived stress, parent reported patient quality of life and parent reported sibling quality of life, parental satisfaction with care, cost of providing improved support, health care utilisation and financial burden for families. Discussion This investigation will establish the feasibility, acceptability and cost-effectiveness of using videotelephony to improve the clinical and psychosocial support provided to regional and remote paediatric oncology patients and their families.
Resumo:
In this paper, we describe, in detail, a design method that assures that the designed product satisfies a set of prescribed demands while, at the same time, providing a concise representation of the design that facilitates communication in multidisciplinary design teams. This Demand Compliant Design (DeCoDe) method was in itself designed to comply with a set of demands. The demands on the method were determined by an analysis of some of the most widely used design methods and from the needs arising in the practice of design for quality. We show several modes of use of the DeCoDe method and illustrate with examples.