651 resultados para Flight engineering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of our understanding and management of ecological processes requires knowledge of the distribution and abundance of species. Reliable abundance or density estimates are essential for managing both threatened and invasive populations, yet are often challenging to obtain. Recent and emerging technological advances, particularly in unmanned aerial vehicles (UAVs), provide exciting opportunities to overcome these challenges in ecological surveillance. UAVs can provide automated, cost-effective surveillance and offer repeat surveys for pest incursions at an invasion front. They can capitalise on manoeuvrability and advanced imagery options to detect species that are cryptic due to behaviour, life-history or inaccessible habitat. UAVs may also cause less disturbance, in magnitude and duration, for sensitive fauna than other survey methods such as transect counting by humans or sniffer dogs. The surveillance approach depends upon the particular ecological context and the objective. For example, animal, plant and microbial target species differ in their movement, spread and observability. Lag-times may exist between a pest species presence at a site and its detectability, prompting a need for repeat surveys. Operationally, however, the frequency and coverage of UAV surveys may be limited by financial and other constraints, leading to errors in estimating species occurrence or density. We use simulation modelling to investigate how movement ecology should influence fine-scale decisions regarding ecological surveillance using UAVs. Movement and dispersal parameter choices allow contrasts between locally mobile but slow-dispersing populations, and species that are locally more static but invasive at the landscape scale. We find that low and slow UAV flights may offer the best monitoring strategy to predict local population densities in transects, but that the consequent reduction in overall area sampled may sacrifice the ability to reliably predict regional population density. Alternative flight plans may perform better, but this is also dependent on movement ecology and the magnitude of relative detection errors for different flight choices. Simulated investigations such as this will become increasingly useful to reveal how spatio-temporal extent and resolution of UAV monitoring should be adjusted to reduce observation errors and thus provide better population estimates, maximising the efficacy and efficiency of unmanned aerial surveys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surveying threatened and invasive species to obtain accurate population estimates is an important but challenging task that requires a considerable investment in time and resources. Estimates using existing ground-based monitoring techniques, such as camera traps and surveys performed on foot, are known to be resource intensive, potentially inaccurate and imprecise, and difficult to validate. Recent developments in unmanned aerial vehicles (UAV), artificial intelligence and miniaturized thermal imaging systems represent a new opportunity for wildlife experts to inexpensively survey relatively large areas. The system presented in this paper includes thermal image acquisition as well as a video processing pipeline to perform object detection, classification and tracking of wildlife in forest or open areas. The system is tested on thermal video data from ground based and test flight footage, and is found to be able to detect all the target wildlife located in the surveyed area. The system is flexible in that the user can readily define the types of objects to classify and the object characteristics that should be considered during classification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of UAVs for remote sensing tasks; e.g. agriculture, search and rescue is increasing. The ability for UAVs to autonomously find a target and perform on-board decision making, such as descending to a new altitude or landing next to a target is a desired capability. Computer-vision functionality allows the Unmanned Aerial Vehicle (UAV) to follow a designated flight plan, detect an object of interest, and change its planned path. In this paper we describe a low cost and an open source system where all image processing is achieved on-board the UAV using a Raspberry Pi 2 microprocessor interfaced with a camera. The Raspberry Pi and the autopilot are physically connected through serial and communicate via MAVProxy. The Raspberry Pi continuously monitors the flight path in real time through USB camera module. The algorithm checks whether the target is captured or not. If the target is detected, the position of the object in frame is represented in Cartesian coordinates and converted into estimate GPS coordinates. In parallel, the autopilot receives the target location approximate GPS and makes a decision to guide the UAV to a new location. This system also has potential uses in the field of Precision Agriculture, plant pest detection and disease outbreaks which cause detrimental financial damage to crop yields if not detected early on. Results show the algorithm is accurate to detect 99% of object of interest and the UAV is capable of navigation and doing on-board decision making.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are some scenarios in which Unmmaned Aerial Vehicle (UAV) navigation becomes a challenge due to the occlusion of GPS systems signal, the presence of obstacles and constraints in the space in which a UAV operates. An additional challenge is presented when a target whose location is unknown must be found within a confined space. In this paper we present a UAV navigation and target finding mission, modelled as a Partially Observable Markov Decision Process (POMDP) using a state-of-the-art online solver in a real scenario using a low cost commercial multi rotor UAV and a modular system architecture running under the Robotic Operative System (ROS). Using POMDP has several advantages to conventional approaches as they take into account uncertainties in sensor information. We present a framework for testing the mission with simulation tests and real flight tests in which we model the system dynamics and motion and perception uncertainties. The system uses a quad-copter aircraft with an board downwards looking camera without the need of GPS systems while avoiding obstacles within a confined area. Results indicate that the system has 100% success rate in simulation and 80% rate during flight test for finding targets located at different locations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Aims Considerable variation has been documented with fleet safety interventions’ abilities to create lasting behavioural change, and research has neglected to consider employees’ perceptions regarding the effectiveness of fleet interventions. This is a critical oversight as employees’ beliefs and acceptance levels (as well as the perceived organisational commitment to safety) can ultimately influence levels of effectiveness, and this study aimed to examine such perceptions in Australian fleet settings. Method 679 employees sourced from four Australian organisations completed a safety climate questionnaire as well as provided perspectives about the effectiveness of 35 different safety initiatives. Results Countermeasures that were perceived as most effective were a mix of human and engineering-based approaches: - (a) purchasing safer vehicles; - (b) investigating serious vehicle incidents, and; - (c) practical driver skills training. In contrast, least effective countermeasures were considered to be: - (a) signing a promise card; - (b) advertising a company’s phone number on the back of cars for complaints and compliments, and; - (c) communicating cost benefits of road safety to employees. No significant differences in employee perceptions were identified based on age, gender, employees’ self-reported crash involvement or employees’ self-reported traffic infringement history. Perceptions of safety climate were identified to be “moderate” but were not linked to self-reported crash or traffic infringement history. However, higher levels of safety climate were positively correlated with perceived effectiveness of some interventions. Conclusion Taken together, employees believed occupational road safety risks could best be managed by the employer by implementing a combination of engineering and human resource initiatives to enhance road safety. This paper will further outline the key findings in regards to practice as well as provide direction for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E-government provides a platform for governments to implement web enabled services that facilitate communication between citizens and the government. However, technology driven design approach and limited understanding of citizens' requirements, have led to a number of critical usability problems on the government websites. Hitherto, there has been no systematic attempt to analyse the way in which theory of User Centred Design (UCD) can contribute to address the usability issues of government websites. This research seeks to fill this gap by synthesising perspectives drawn from the study of User Centred Design and examining them based on the empirical data derived from case study of the Scottish Executive website. The research employs a qualitative approach in the collection and analysis of data. The triangulated analysis of the findings reveals that e-government web designers take commercial development approach and focus only on technical implementations which lead to websites that do not meet citizens' expectations. The research identifies that e-government practitioners can overcome web usability issues by transferring the theory of UCD to practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generating discriminative input features is a key requirement for achieving highly accurate classifiers. The process of generating features from raw data is known as feature engineering and it can take significant manual effort. In this paper we propose automated feature engineering to derive a suite of additional features from a given set of basic features with the aim of both improving classifier accuracy through discriminative features, and to assist data scientists through automation. Our implementation is specific to HTTP computer network traffic. To measure the effectiveness of our proposal, we compare the performance of a supervised machine learning classifier built with automated feature engineering versus one using human-guided features. The classifier addresses a problem in computer network security, namely the detection of HTTP tunnels. We use Bro to process network traffic into base features and then apply automated feature engineering to calculate a larger set of derived features. The derived features are calculated without favour to any base feature and include entropy, length and N-grams for all string features, and counts and averages over time for all numeric features. Feature selection is then used to find the most relevant subset of these features. Testing showed that both classifiers achieved a detection rate above 99.93% at a false positive rate below 0.01%. For our datasets, we conclude that automated feature engineering can provide the advantages of increasing classifier development speed and reducing development technical difficulties through the removal of manual feature engineering. These are achieved while also maintaining classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many parts of the world, uncontrolled fires in sparsely populated areas are a major concern as they can quickly grow into large and destructive conflagrations in short time spans. Detecting these fires has traditionally been a job for trained humans on the ground, or in the air. In many cases, these manned solutions are simply not able to survey the amount of area necessary to maintain sufficient vigilance and coverage. This paper investigates the use of unmanned aerial systems (UAS) for automated wildfire detection. The proposed system uses low-cost, consumer-grade electronics and sensors combined with various airframes to create a system suitable for automatic detection of wildfires. The system employs automatic image processing techniques to analyze captured images and autonomously detect fire-related features such as fire lines, burnt regions, and flammable material. This image recognition algorithm is designed to cope with environmental occlusions such as shadows, smoke and obstructions. Once the fire is identified and classified, it is used to initialize a spatial/temporal fire simulation. This simulation is based on occupancy maps whose fidelity can be varied to include stochastic elements, various types of vegetation, weather conditions, and unique terrain. The simulations can be used to predict the effects of optimized firefighting methods to prevent the future propagation of the fires and greatly reduce time to detection of wildfires, thereby greatly minimizing the ensuing damage. This paper also documents experimental flight tests using a SenseFly Swinglet UAS conducted in Brisbane, Australia as well as modifications for custom UAS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents a brief history of the development of ophthalmic biomaterials. Particularities in the development of ophthalmic biomaterials are discussed and some of their historic priorities within the general field of biomaterials are revealed or emphasized. The chapter then discusses the role and integration of ophthalmic biomaterials in tissue engineering and regenerative medicine applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has recently been a rapidly increasing interest in solar powered UAVs. With the emergence of high power density batteries, long range and low-power micro radio devices, airframes, and powerful micro-processors and motors, small/micro UAVs have become applicable in civilian applications such as remote sensing, mapping, traffic monitoring, search and rescue. The Green Falcon UAV is an innovative project from Queensland University of Technology and has been developed and tested during these past years. It comprises a wide range of subsystems to be analyses and studied such as Solar Panel Cells, Gas sensor, Aerodynamics of the wing and others. Previous test however, resulted in damage to the solar cells and some of the subsystems including motor and ESC. This report describes the repair and verification process followed to improve the efficiency of the Green Falcon UAV. The report shows some of the results obtained in previous static and flight tests as well as some of recommendations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modulation of material physical and chemical properties through selective surface engineering is currently one of the most active research fields, aimed at optimizing functional performance for applications. The activity of exposed crystal planes determines the catalytic, sensory, photocatalytic, and electrochemical behavior of a material. In the research on nanomagnets, it opens up new perspectives in the fields of nanoelectronics, spintronics, and quantum computation. Herein, we demonstrate controllable magnetic modulation of α-MnO 2 nanowires, which displayed surface ferromagnetism or antiferromagnetism, depending on the exposed plane. First-principles density functional theory calculations confirm that both Mn- and O-terminated α-MnO2(1 1 0) surfaces exhibit ferromagnetic ordering. The investigation of surface-controlled magnetic particles will lead to significant progress in our fundamental understanding of functional aspects of magnetism on the nanoscale, facilitating rational design of nanomagnets. Moreover, we approved that the facet engineering pave the way on designing semiconductors possessing unique properties for novel energy applications, owing to that the bandgap and the electronic transport of the semiconductor can be tailored via exposed surface modulations.