696 resultados para 11 Medical and Health Sciences
Resumo:
In this 'Summary Guidance for Daily Practice', we describe the basic principles of prevention and management of foot problems in persons with diabetes. This summary is based on the International Working Group on the Diabetic Foot (IWGDF) Guidance 2015. There are five key elements that underpin prevention of foot problems: (1) identification of the at-risk foot; (2) regular inspection and examination of the at-risk foot; (3) education of patient, family and healthcare providers; (4) routine wearing of appropriate footwear, and; (5) treatment of pre-ulcerative signs. Healthcare providers should follow a standardized and consistent strategy for evaluating a foot wound, as this will guide further evaluation and therapy. The following items must be addressed: type, cause, site and depth, and signs of infection. There are seven key elements that underpin ulcer treatment: (1) relief of pressure and protection of the ulcer; (2) restoration of skin perfusion; (3) treatment of infection; (4) metabolic control and treatment of co-morbidity; (5) local wound care; (6) education for patient and relatives, and; (7) prevention of recurrence. Finally, successful efforts to prevent and manage foot problems in diabetes depend upon a well-organized team, using a holistic approach in which the ulcer is seen as a sign of multi-organ disease, and integrating the various disciplines involved.
Resumo:
Objective The objective of this study was to investigate the risk of chronic kidney disease (CKD) stage 4-5 and dialysis treatment on incidence of foot ulceration and major lower extremity amputation in comparison to CKD stage 3. Methods In this retrospective study, all individuals who visited our hospital between 2006 and 2012 because of CKD stages 3 to 5 or dialysis treatment were included. Medical records were reviewed for incidence of foot ulceration and major amputation. The time from CKD 3, CKD 4-5, and dialysis treatment until first foot ulceration and first major lower extremity amputation was calculated and analyzed by Kaplan-Meier curves and multivariate Cox proportional hazards model. Diabetes mellitus, peripheral arterial disease, peripheral neuropathy, and foot deformities were included for potential confounding. Results A total of 669 individuals were included: 539 in CKD 3, 540 in CKD 4-5, and 259 in dialysis treatment (individuals could progress from one group to the next). Unadjusted foot ulcer incidence rates per 1000 patients per year were 12 for CKD 3, 47 for CKD 4-5, and 104 for dialysis (P < .001). In multivariate analyses, the hazard ratio for incidence of foot ulceration was 4.0 (95% confidence interval [CI], 2.6-6.3) in CKD 4-5 and 7.6 (95% CI, 4.8-12.1) in dialysis treatment compared with CKD 3. Hazard ratios for incidence of major amputation were 9.5 (95% CI, 2.1-43.0) and 15 (95% CI, 3.3-71.0), respectively. Conclusions CKD 4-5 and dialysis treatment are independent risk factors for foot ulceration and major amputation compared with CKD 3. Maximum effort is needed in daily clinical practice to prevent foot ulcers and their devastating consequences in all individuals with CKD 4-5 or dialysis treatment.
Resumo:
During the treatment of diabetic Charcot neuroarthropathy (CN) of the foot in two young patients, we discovered atypical alterations of their hands with loss of strength and paresthesia combined with atypical and nonhealing bone alterations and instability. Whereas CN of the foot is a serious and well-known complication of diabetes, CN of the hand is only mentioned in four articles (1–4).
Resumo:
Background Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared thermography. Subjects and Methods For 38 patients with diabetes who presented with a foot infection or were admitted to the hospital with a foot-related complication, photographs of the plantar foot surface using a photographic imaging device and temperature data from six plantar regions using an infrared thermometer were obtained. A temperature difference between feet of > 2.2 °C defined a ''hotspot.'' Two independent observers assessed each foot for presence of foot infection, both live (using the Perfusion-Extent-Depth- Infection-Sensation classification) and from photographs 2 and 4 weeks later (for presence of erythema and ulcers). Agreement in diagnosis between live assessment and (the combination of ) photographic assessment and temperature recordings was calculated. Results Diagnosis of infection from photographs was specific (> 85%) but not very sensitive (< 60%). Diagnosis based on hotspots present was sensitive (> 90%) but not very specific (<25%). Diagnosis based on the combination of photographic and temperature assessments was both sensitive (> 60%) and specific (> 79%). Intra-observer agreement between photographic assessments was good (Cohen's j = 0.77 and 0.52 for both observers). Conclusions Diagnosis of foot infection in patients with diabetes seems valid and reliable using photographic imaging in combination with infrared thermography. This supports the intended use of these modalities for the home monitoring of high-risk patients with diabetes to facilitate early diagnosis of signs of foot infection.
Resumo:
Objective To determine mortality rates after a first lower limb amputation and explore the rates for different subpopulations. Methods Retrospective cohort study of all people who underwent a first amputation at or proximal to transtibial level, in an area of 1.7 million people. Analysis with Kaplan-Meier curves and Log Rank tests for univariate associations of psycho-social and health variables. Logistic regression for odds of death at 30-days, 1-year and 5-years. Results 299 people were included. Median time to death was 20.3 months (95%CI: 13.1; 27.5). 30-day mortality = 22%; odds of death 2.3 times higher in people with history of cerebrovascular disease (95%CI: 1.2; 4.7, P = 0.016). 1 year mortality = 44%; odds of death 3.5 times higher for people with renal disease (95%CI: 1.8; 7.0, P < 0.001). 5-years mortality = 77%; odds of death 5.4 times higher for people with renal disease (95%CI: 1.8; 16.0,P = 0.003). Variation in mortality rates was most apparent in different age groups; people 75–84 years having better short term outcomes than those younger and older. Conclusions Mortality rates demonstrated the frailty of this population, with almost one quarter of people dying within 30-days, and almost half at 1 year. People with cerebrovascular had higher odds of death at 30 days, and those with renal disease and 1 and 5 years, respectively.
Resumo:
Recommendations - 1 To identify a person with diabetes at risk for foot ulceration, examine the feet annually to seek evidence for signs or symptoms of peripheral neuropathy and peripheral artery disease. (GRADE strength of recommendation: strong; Quality of evidence: low) - 2 In a person with diabetes who has peripheral neuropathy, screen for a history of foot ulceration or lower-extremity amputation, peripheral artery disease, foot deformity, pre-ulcerative signs on the foot, poor foot hygiene and ill-fitting or inadequate footwear. (Strong; Low) - 3 Treat any pre-ulcerative sign on the foot of a patient with diabetes. This includes removing callus, protecting blisters and draining when necessary, treating ingrown or thickened toe nails, treating haemorrhage when necessary and prescribing antifungal treatment for fungal infections. (Strong; Low) - 4 To protect their feet, instruct an at-risk patient with diabetes not to walk barefoot, in socks only, or in thin-soled standard slippers, whether at home or when outside. (Strong; Low) - 5 Instruct an at-risk patient with diabetes to daily inspect their feet and the inside of their shoes, daily wash their feet (with careful drying particularly between the toes), avoid using chemical agents or plasters to remove callus or corns, use emollients to lubricate dry skin and cut toe nails straight across. (Weak; Low) - 6 Instruct an at-risk patient with diabetes to wear properly fitting footwear to prevent a first foot ulcer, either plantar or non-plantar, or a recurrent non-plantar foot ulcer. When a foot deformity or a pre-ulcerative sign is present, consider prescribing therapeutic shoes, custom-made insoles or toe orthosis. (Strong; Low) - 7 To prevent a recurrent plantar foot ulcer in an at-risk patient with diabetes, prescribe therapeutic footwear that has a demonstrated plantar pressure-relieving effect during walking (i.e. 30% relief compared with plantar pressure in standard of care therapeutic footwear) and encourage the patient to wear this footwear. (Strong; Moderate) - 8 To prevent a first foot ulcer in an at-risk patient with diabetes, provide education aimed at improving foot care knowledge and behaviour, as well as encouraging the patient to adhere to this foot care advice. (Weak; Low) - 9 To prevent a recurrent foot ulcer in an at-risk patient with diabetes, provide integrated foot care, which includes professional foot treatment, adequate footwear and education. This should be repeated or re-evaluated once every 1 to 3 months as necessary. (Strong; Low) - 10 Instruct a high-risk patient with diabetes to monitor foot skin temperature at home to prevent a first or recurrent plantar foot ulcer. This aims at identifying the early signs of inflammation, followed by action taken by the patient and care provider to resolve the cause of inflammation. (Weak; Moderate) - 11 Consider digital flexor tenotomy to prevent a toe ulcer when conservative treatment fails in a high-risk patient with diabetes, hammertoes and either a pre-ulcerative sign or an ulcer on the distal toe. (Weak; Low) - 12 Consider Achilles tendon lengthening, joint arthroplasty, single or pan metatarsal head resection, or osteotomy to prevent a recurrent foot ulcer when conservative treatment fails in a high-risk patient with diabetes and a plantar forefoot ulcer. (Weak; Low) - 13 Do not use a nerve decompression procedure in an effort to prevent a foot ulcer in an at-risk patient with diabetes, in preference to accepted standards of good quality care. (Weak; Low)
Resumo:
Diabetic foot ulceration poses a heavy burden on the patient and the healthcare system, but prevention thereof receives little attention. For every euro spent on ulcer prevention, ten are spent on ulcer healing, and for every randomized controlled trial conducted on prevention, ten are conducted on healing. In this article, we argue that a shift in priorities is needed. For the prevention of a first foot ulcer, we need more insight into the effect of interventions and practices already applied globally in many settings. This requires systematic recording of interventions and outcomes, and well-designed randomized controlled trials that include analysis of cost-effectiveness. After healing of a foot ulcer, the risk of recurrence is high. For the prevention of a recurrent foot ulcer, home monitoring of foot temperature, pressure-relieving therapeutic footwear, and certain surgical interventions prove to be effective. The median effect size found in a total of 23 studies on these interventions is large, over 60%, and further increases when patients are adherent to treatment. These interventions should be investigated for efficacy as a state-of-the-art integrated foot care approach, where attempts are made to assure treatment adherence. Effect sizes of 75-80% may be expected. If such state-of-the-art integrated foot care is implemented, the majority of problems with foot ulcer recurrence in diabetes can be resolved. It is therefore time to act and to set a new target in diabetic foot care. This target is to reduce foot ulcer incidence with at least 75%.
Resumo:
Foot problems complicating diabetes are a source of major patient suffering and societal costs. Investing in evidence-based, internationally appropriate diabetic foot care guidance is likely among the most cost-effective forms of healthcare expenditure, provided it is goal-focused and properly implemented. The International Working Group on the Diabetic Foot (IWGDF) has been publishing and updating international Practical Guidelines since 1999. The 2015 updates are based on systematic reviews of the literature, and recommendations are formulated using the Grading of Recommendations Assessment Development and Evaluation system. As such, we changed the name from 'Practical Guidelines' to 'Guidance'. In this article we describe the development of the 2015 IWGDF Guidance documents on prevention and management of foot problems in diabetes. This Guidance consists of five documents, prepared by five working groups of international experts. These documents provide guidance related to foot complications in persons with diabetes on: prevention; footwear and offloading; peripheral artery disease; infections; and, wound healing interventions. Based on these five documents, the IWGDF Editorial Board produced a summary guidance for daily practice. The resultant of this process, after reviewed by the Editorial Board and by international IWGDF members of all documents, is an evidence-based global consensus on prevention and management of foot problems in diabetes. Plans are already under way to implement this Guidance. We believe that following the recommendations of the 2015 IWGDF Guidance will almost certainly result in improved management of foot problems in persons with diabetes and a subsequent worldwide reduction in the tragedies caused by these foot problems.
Resumo:
- Objective The aim is to identify the role and scope of Accredited Exercise Physiologist (AEP) services in the mental health sector and to provide insight as to how AEPs can contribute to the multidisciplinary mental health team. - Methods A modified Delphi approach was utilised. Thirteen AEPs with experience in mental health contributed to the iterative development of a national consensus statement. Six mental health professionals with expertise in psychiatry, mental health nursing, general practice and mental health research participated in the review process. Reviewers were provided with a template to systematically provide feedback on the language, content, structure and relevance to their professional group. - Results This consensus statement outlines how AEPs can contribute to the multidisciplinary mental health team, the aims and scope of AEP-led interventions in mental health services and examples of such interventions, the range of physical and mental health outcomes possible through AEP-led interventions and common referral pathways to community AEP services. - Outcome AEPs can play a key role in the treatment of individuals experiencing mental illness. The diversity of AEP interventions allows for a holistic approach to care, enhancing both physical and mental health outcomes.
Resumo:
This chapter describes biological and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. You will recall from the introduction to Section 2 that health determinants are the biomedical, genetic, behavioural, socioeconomic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (Australian Institute of Health and Welfare (AIHW) AIHW 2012a). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether a population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family are all likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people have limited control over many of these determinants (WHO 2007).
Resumo:
Globally, the main contributors to morbidity and mortality are chronic conditions, including cardiovascular disease and diabetes. Chronic disease is costly and partially avoidable, with around 60% of deaths and nearly 50% of the global disease burden attributable to these conditions. By 2020, chronic illnesses will likely be the leading cause of disability worldwide. Existing healthcare systems that focus on acute episodic health conditions, both national and international, cannot address the worldwide transition to chronic illness; nor are they appropriate for the ongoing care and management of those already dealing with chronic diseases. As such, chronic disease management requires integrated approaches that incorporate interventions targeted at both individuals and populations, and emphasise the shared risk factors of different conditions. International and Australian strategic planning documents articulate similar elements to manage chronic disease, including the need for aligning sectoral policies for health, forming partnerships, and engaging communities in decision-making. Infectious diseases are also a common and significant contributor to ill health throughout the world. In many countries, this impact has been minimised by the combined efforts of preventative health measures and improved treatment methods. However, in low-income countries, infectious diseases remain the dominant cause of death and disability. The World Health Organization (WHO) estimates that infectious diseases (including respiratory infections) still account for around 23% (or around 14 million) of all deaths each year, and result in over 4.6 billion episodes of diarrhoeal disease and 243 million cases of malaria each year (Lozano et al. 2012, WHO 2009). In addition to the high level of mortality, infectious diseases disable many hundreds of millions of people each year, mainly in developing countries, with the global burden of disease from infectious diseases estimated to be around 300 million DALYs (disability-adjusted life years) (WHO 2012). The aim of this chapter is to outline the impact that infectious diseases and chronic diseases have on the health of the community, describe the public health strategies used to reduce the burden of those diseases, and discuss the historic and emerging disease risks to public health. This chapter examines the comprehensive approaches implemented to prevent both chronic and infectious diseases, and to manage and care for communities with these conditions.
Resumo:
What is the future for public health in the twenty-first century? Can we glean an idea about the future of public health from its past? As Winston Churchill once said: ‘[T]he further backward you look, the further forward you can see.’ What can we see in the history of public health that gives us an idea of where public health might be headed in the future? (Gruszin et al. 2012). In the twentieth century there was substantial progress in public health in Australia. These improvements were brought about through a number of factors. In part, improvements were due to increasing knowledge about the natural history of disease and its treatment. Added to this knowledge was a shifting focus from legislative measures to protect health, to the emergence of improved promotion and prevention strategies, and a general improvement in social and economic conditions for people living in countries such as Australia. Gruszin et al. (2012) consider the range of social and economic reforms of the twentieth century as the most important determinants of the public’s health at the start of the twenty-first century (Gruszin et al. 2012 p 201). The same could not, however, be said for second or third world countries, many of whom have the most fundamental of sanitary and health protection issues still to deal with. For example, in sub-Saharan Africa and in Russia the decline in life expectancy can be said to be related to a range of interconnected factors. In Russia, issues such as alcoholism, violence, suicide, accidents and cardiovascular disease could be contributing to the falling life expectancy (McMichael & Butler 2007). In sub-Saharan Africa, a range of factors, such as HIV/AIDS, poverty, malaria, tuberculosis, undernutrition, totally inadequate infrastructure, gender inequality, conflict and violence, political taboos and a complete lack of political will, have all contributed to a dramatic drop in life expectancy (McMichael & Butler 2007).
Resumo:
Why is public health important? An Introduction to Public Health is about the discipline of public health, the nature and scope of public health activity, and the challenges that face public health in the twenty-first century. The book is designed as an introductory text to the principles and practice of public health. This is a complex and multifaceted area. What we have tried to do in this book is make public health easy to understand without making it simplistic. As many authors have stated, public health is essentially about the organised efforts of society to promote, protect and restore the public’s health (Brownson 2011, Last 2001, Schneider 2011, Turnock 2012, Winslow 1920). It is multidisciplinary in nature, and it is influenced by genetic, physical, social, cultural, economic and political determinants of health. How do we define public health, and what are the disciplines that contribute to public health? How has the area changed over time? Are there health issues in the twenty-first century that change the focus and activity of public health? Yes, there are! There are many challenges facing public health now and in the future, just as there have been over the course of the history of organised public health efforts, dating from around 1850 in the Western world. Of what relevance is public health to the many health disciplines that contribute to it? How might an understanding of public health contribute to a range of health professionals who use the principles and practices of public health in their professional activities? These are the questions that this book addresses. Introduction to Public Health leads the reader on a journey of discovery that concludes with an understanding of the nature and scope of public health and the challenges facing the field into the future. In this edition we have included one new chapter, ‘Public health and social policy’, in order to broaden our understanding of the policy influences on public health. The book is designed for a range of students undertaking health courses where there is a focus on advancing the health of the population. While it is imperative that people wanting to be public health professionals understand the theory and practice of public health, many other health workers contribute to effective public health practice. The book would also be relevant to a range of undergraduate students who want an introductory understanding of public health and its practice.
Resumo:
Background There is a comprehensive literature on the academic outcomes (attrition and success) of students in traditional/baccalaureate nursing programs, but much less is known about the academic outcomes of students in accelerated nursing programs. The aim of this systematic review is to report on the attrition and success rates (either internal examination or NCLEX-RN) of accelerated students, compared to traditional students. Methods For the systematic review, the databases (Pubmed, Cinahl and PsychINFO) and Google Scholar were searched using the search terms ‘accelerated’ or ‘accreditation for prior learning’, ‘fast-track’ or ‘top up’ and ‘nursing’ with ‘attrition’ or ‘retention’ or ‘withdrawal’ or ‘success’ from 1994 to January 2016. All relevant articles were included, regardless of quality. Results The findings of 19 studies of attrition rates and/or success rates for accelerated students are reported. For international accelerated students, there were only three studies, which are heterogeneous, and have major limitations. One of three studies has lower attrition rates, and one has shown higher success rates, than traditional students. In contrast, another study has shown high attrition and low success for international accelerated students. For graduate accelerated students, most of the studies are high quality, and showed that they have rates similar or better than traditional students. Thus, five of six studies have shown similar or lower attrition rates. Four of these studies with graduate accelerated students and an additional seven studies of success rates only, have shown similar or better success rates, than traditional students. There are only three studies of non-university graduate accelerated students, and these had weaknesses, but were consistent in reporting higher attrition rates than traditional students. Conclusions The paucity and weakness of information available makes it unclear as to the attrition and/or success of international accelerated students in nursing programs. The good information available suggests that accelerated programs may be working reasonably well for the graduate students. However, the limited information available for non-university graduate students is weak, but consistent, in suggesting they may struggle in accelerated courses. Further studies are needed to determine the attrition and success rates of accelerated students, particularly for international and non-university graduate students.
Resumo:
Introduction Patients post sepsis syndromes have a poor quality of life and a high rate of recurring illness or mortality. Follow-up clinics have been instituted for patients postgeneral intensive care but evidence is sparse, and there has been no clinic specifically for survivors of sepsis. The aim of this trial is to investigate if targeted screening and appropriate intervention to these patients can result in an improved quality of life (Short Form 36 health survey (SF36V.2)), decreased mortality in the first 12 months, decreased readmission to hospital and/or decreased use of health resources. Methods and analysis 204 patients postsepsis syndromes will be randomised to one of the two groups. The intervention group will attend an outpatient clinic two monthly for 6 months and receive screening and targeted intervention. The usual care group will remain under the care of their physician. To analyse the results, a baseline comparison will be carried out between each group. Generalised estimating equations will compare the SF36 domain scores between groups and across time points. Mortality will be compared between groups using a Cox proportional hazards (time until death) analysis. Time to first readmission will be compared between groups by a survival analysis. Healthcare costs will be compared between groups using a generalised linear model. Economic (health resource) evaluation will be a within-trial incremental cost utility analysis with a societal perspective. Ethics and dissemination Ethical approval has been granted by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (HREC; HREC/13/QRBW/17), The University of Queensland HREC (2013000543), Griffith University (RHS/08/14/HREC) and the Australian Government Department of Health (26/2013). The results of this study will be submitted to peer-reviewed intensive care journals and presented at national and international intensive care and/or rehabilitation conferences.