704 resultados para Plant quality
Resumo:
The aim of the study was to assess the feasibility and effectiveness of aquatic‐based exercise in the form of deep water running ( DWR ) as part of a multimodal physiotherapy programme ( MMPP ) for breast cancer survivors. A controlled clinical trial was conducted in 42 primary breast cancer survivors recruited from community‐based P rimary C are C entres. Patients in the experimental group received a MMPP incorporating DWR , 3 times a week, for an 8‐week period. The control group received a leaflet containing instructions to continue with normal activities. Statistically significant improvements and intergroup effect size were found for the experimental group for P iper F atigue S cale‐ R evised total score ( d = 0.7, P = 0.001), as well as behavioural/severity ( d = 0.6, P = 0.05), affective/meaning ( d = 1.0, P = 0.001) and sensory ( d = 0.3, P = 0.03) domains. Statistically significant differences between the experimental and control groups were also found for general health ( d = 0.5, P < 0.05) and quality of life ( d = 1.3, P < 0.05). All participants attended over 80% of sessions, with no major adverse events reported. The results of this study suggest MMPP incorporating DWR decreases cancer‐related fatigue and improves general health and quality of life in breast cancer survivors. Further, the high level of adherence and lack of adverse events indicate such a programme is safe and feasible.
Resumo:
In early childhood research, one of the most debated topics is that of early child care. This thesis draws upon data from Growing Up In Australia: The Longitudinal Study of Australian Children to explore the role of early child care in Australia. It examines the quality of early child care accessed by infants, the patterns of child care use across the early years and the impact of early child care experiences on academic, social-emotional and health outcomes at 6 to 7 years of age. Results indicate child care experiences vary considerably and suggest early child care experiences may have both positive and negative impacts upon later developmental outcomes.
Resumo:
For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters−2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.
Resumo:
In this thesis various schemes using custom power devices for power quality improvement in low voltage distribution network are studied. Customer operated distributed generators makes a typical network non-radial and affect the power quality. A scheme considering different algorithm of DSTATCOM is proposed for power circulation and islanded operation of the system. To compensate reactive power overflow and facilitate unity power factor, a UPQC is introduced. Stochastic analysis is carried out for different scenarios to get a comprehensive idea about a real life distribution network. Combined operation of static compensator and voltage regulator is tested for the optimum quality and stability of the system.
Resumo:
The preservation technique of drying offers a significant increase in the shelf life of food materials, along with the modification of quality attributes due to simultaneous heat and mass transfer. Variations in porosity are just one of the microstructural changes that take place during the drying of most food materials. Some studies found that there may be a relationship between porosity and the properties of dried foods. However, no conclusive relationship has yet been established in the literature. This paper presents an overview of the factors that influence porosity, as well as the effects of porosity on dried food quality attributes. The effect of heat and mass transfer on porosity is also discussed along with porosity development in various drying methods. After an extensive review of the literature concerning the study of porosity, it emerges that a relationship between process parameters, food qualities, and sample properties can be established. Therefore, we propose a hypothesis of relationships between process parameters, product quality attributes, and porosity.
Resumo:
Water removal during drying depends on the pathway of water migration from food materials. Moreover, the water removal rate also depends on the characteristics of the cell wall of plant tissue. In this study, the influence of cell wall properties (such as moisture distribution, stiffness, thickness and cell dimension) on porosity and shrinkage of dried product was investigated. Cell wall stiffness depends on a complex combination of plant cell microstructure, composition of food materials and the water-holding capacity of the cell. In this work, a preliminary investigation of the cell wall properties of apple was conducted in order to predict changes of porosity and shrinkage during drying. Cell wall characteristics of two types of apple (Granny Smith and Red Delicious) were investigated under convective drying to correlate with porosity and shrinkage. A scanning electron microscope (SEM), 2kN Intron, pycnometer and ImageJ software were used in order to measure and analyse cell characteristics, water holding capacity of cell walls, porosity and shrinkage. The cell firmness of the Red Delicious apple was found to be higher than for Granny Smith apples. A remarkable relationship was observed between cell wall characteristics when compare with heat and mass transfer characteristics. It was also found that the evolution of porosity and shrinkage are noticeably influenced by the nature of the cell wall during convective drying. This study has revealed a better understanding of porosity and the shrinkage of dried food at microscopy (cell) level, and will provide better insights to attain energy-effective drying processes and improved quality of dried foods.
Resumo:
This study aimed to provide a detailed evaluation and comparison of a range of modulated beam evaluation metrics, in terms of their correlation with QA testing results and their variation between treatment sites, for a large number of treatments. Ten metrics including the modulation index (MI), fluence map complexity (FMC), modulation complexity score (MCS), mean aperture displacement (MAD) and small aperture score (SAS) were evaluated for 546 beams from 122 IMRT and VMAT treatment plans targeting the anus, rectum, endometrium, brain, head and neck and prostate. The calculated sets of metrics were evaluated in terms of their relationships to each other and their correlation with the results of electronic portal imaging based quality assurance (QA) evaluations of the treatment beams. Evaluation of the MI, MAD and SAS suggested that beams used in treatments of the anus, rectum, head and neck were more complex than the prostate and brain treatment beams. Seven of the ten beam complexity metrics were found to be strongly correlated with the results from QA testing of the IMRT beams (p < 0.00008). For example, Values of SAS (with MLC apertures narrower than 10 mm defined as “small”) less than 0.2 also identified QA passing IMRT beams with 100% specificity. However, few of the metrics are correlated with the results from QA testing of the VMAT beams, whether they were evaluated as whole 360◦ arcs or as 60◦ sub-arcs. Select evaluation of beam complexity metrics (at least MI, MCS and SAS) is therefore recommended, as an intermediate step in the IMRT QA chain. Such evaluation may also be useful as a means of periodically reviewing VMAT planning or optimiser performance.
Resumo:
This study constructs performance prediction models to estimate the end-user perceived video quality on mobile devices for the latest video encoding techniques –VP9 and H.265. Both subjective and objective video quality assessments were carried out for collecting data and selecting the most desirable predictors. Using statistical regression, two models were generated to achieve 94.5% and 91.5% of prediction accuracies respectively, depending on whether the predictor derived from the objective assessment is involved. These proposed models can be directly used by media industries for video quality estimation, and will ultimately help them to ensure a positive end-user quality of experience on future mobile devices after the adaptation of the latest video encoding technologies.
Resumo:
Background Food neophobia, the rejection of unknown or novel foods, may result in poor dietary patterns. This study investigates the cross-sectional relationship between neophobia in children aged 24 months and variety of fruit and vegetable consumption, intake of discretionary foods and weight. Methods Secondary analysis of data from 330 parents of children enrolled in the NOURISH RCT (control group only) and SAIDI studies was performed using data collected at child age 24 months. Neophobia was measured at 24 months using the Child Food Neophobia Scale (CFNS). The cross-sectional associations between total CFNS score and fruit and vegetable variety, discretionary food intake and BMI (Body Mass Index) Z-score were examined via multiple regression models; adjusting for significant covariates. Results At 24 months, more neophobic children were found to have lower variety of fruits (β=-0.16, p=0.003) and vegetables (β=-0.29, p<0.001) but have a greater proportion of daily energy from discretionary foods (β=0.11, p=0.04). There was no significant association between BMI Z-score and CFNS score. Conclusions Neophobia is associated with poorer dietary quality. Results highlight the need for interventions to (1) begin early to expose children to a wide variety of nutritious foods before neophobia peaks and (2) enable health professionals to educate parents on strategies to overcome neophobia.
Co-optimisation of indoor environmental quality and energy consumption within urban office buildings
Resumo:
This study aimed to develop a multi-component model that can be used to maximise indoor environmental quality inside mechanically ventilated office buildings, while minimising energy usage. The integrated model, which was developed and validated from fieldwork data, was employed to assess the potential improvement of indoor air quality and energy saving under different ventilation conditions in typical air-conditioned office buildings in the subtropical city of Brisbane, Australia. When operating the ventilation system under predicted optimal conditions of indoor environmental quality and energy conservation and using outdoor air filtration, average indoor particle number (PN) concentration decreased by as much as 77%, while indoor CO2 concentration and energy consumption were not significantly different compared to the normal summer time operating conditions. Benefits of operating the system with this algorithm were most pronounced during the Brisbane’s mild winter. In terms of indoor air quality, average indoor PN and CO2 concentrations decreased by 48% and 24%, respectively, while potential energy savings due to free cooling went as high as 108% of the normal winter time operating conditions. The application of such a model to the operation of ventilation systems can help to significantly improve indoor air quality and energy conservation in air-conditioned office buildings.
Resumo:
Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children’s exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools.