727 resultados para Judicial process


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kaolinite naturally occurs in the plate form for the interlayer hydrogen bond and the distortion and adaption of tetrahedron and octahedron. But kaolinite sheets can be exfoliated to nanoscrolls artificially in laboratory through multiple-step displacement intercalation. The driving force for kaolinite sheet to be curled nanoscroll originates from the size discrepancy of Si–O tetrahedron and Al–O octahedron. The displacement intercalation promoted the platy kaolinite sheets spontaneously to be scrolled by eliminating the interlayer hydrogen bond and atomic interaction. Kaolinite nanoscrolls are hollow tubes with outer face of tetrahedral sheet and inner face of octahedral sheet. Based on the theoretical calculation it is firstly reported that the minimum interior diameter for a single kaolinite sheet to be scrolled is about 9.08 nm, and the optimal 24.30 nm, the maximum 100 nm, which is verified by the observation of scanning electron microscope and transmission electron microscope. The different adaption types and discrepancy degree between tetrahedron and octahedron generate various curling forces in different directions. The nanoscroll axes prefer the directions as [100], [1 �10], [110], [3 �10], and the relative curling force are as follows, [3 �10] > [100] = [1�10] > [110].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process modeling – the design and use of graphical documentations of an organization’s business processes – is a key method to document and use information about the operations of businesses. Still, despite current interest in process modeling, this research area faces essential challenges. Key unanswered questions concern the impact of process modeling in organizational practice, and the mechanisms through which impacts are developed. To answer these questions and to provide a better understanding of process modeling impact, I turn to the concept of affordances. Affordances describe the possibilities for goal-oriented action that a technical object offers to a user. This notion has received growing attention from IS researchers. The purpose of my research is to further develop the IS discipline’s understanding of affordances and impacts from information objects, such as process models used by analysts for information systems analysis and design. Specifically, I seek to extend existing theory on the emergence, perception and actualization of affordances. I develop a research model that describes the process by which affordances emerge between an individual and an object, how affordances are perceived, and how they are actualized by the individual. The proposed model also explains the role of available information for the individual, and the influence of perceived actualization effort. I operationalize and test this research model empirically, using a full-cycle, mixed methods study consisting of case study and experiment.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a recommendation system that supports process participants in taking risk-informed decisions, with the goal of reducing risks that may arise during process execution. Risk reduction involves decreasing the likelihood and severity of a process fault from occurring. Given a business process exposed to risks, e.g. a financial process exposed to a risk of reputation loss, we enact this process and whenever a process participant needs to provide input to the process, e.g. by selecting the next task to execute or by filling out a form, we suggest to the participant the action to perform which minimizes the predicted process risk. Risks are predicted by traversing decision trees generated from the logs of past process executions, which consider process data, involved resources, task durations and other information elements like task frequencies. When applied in the context of multiple process instances running concurrently, a second technique is employed that uses integer linear programming to compute the optimal assignment of resources to tasks to be performed, in order to deal with the interplay between risks relative to different instances. The recommendation system has been implemented as a set of components on top of the YAWL BPM system and its effectiveness has been evaluated using a real-life scenario, in collaboration with risk analysts of a large insurance company. The results, based on a simulation of the real-life scenario and its comparison with the event data provided by the company, show that the process instances executed concurrently complete with significantly fewer faults and with lower fault severities, when the recommendations provided by our recommendation system are taken into account.