620 resultados para CFD modelling
Resumo:
An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.
Resumo:
Stress- and strain-controlled tests of heat treated high-strength rail steel (Australian Standard AS1085.1) have been performed in order to improve the characterisation of the said material׳s ratcheting and fatigue wear behaviour. The hardness of the rail head material has also been studied and it has been found that hardness reduces considerably below four-millimetres from the rail top surface. Historically, researchers have used test coupons with circular cross-sections to conduct cyclic load tests. Such test coupons, typically five-millimetres in gauge diameter and ten‐millimetres in grip diameter, are usually taken from the rail head sample. When there is considerable variation of material properties over the cross-section it becomes likely that localised properties of the rail material will be missed. In another case from the literature, disks 47 mm in diameter for a twin-disk rolling contact test machine were obtained directly from the rail sample and used to validate ratcheting and rolling contact fatigue wear models. The question arises: How accurate are such tests, especially when large material property gradients exist? In this research paper, the effects of rail sampling location on the ratcheting behaviour of AS1085.1 rail steel were investigated using rectangular-shaped specimens obtained at four different depths to observe their respective cyclic plasticity behaviour. The microstructural features of the test coupons were also analysed, especially the pearlite inter-lamellar spacing which showed strong correlation with both hardness and cyclic plasticity behaviour of the material. This work ultimately provides new data and testing methodology to aid the selection of valid parameters for material constitutive models to better understand rail surface ratcheting and wear.
Resumo:
This article presents and evaluates Quantum Inspired models of Target Activation using Cued-Target Recall Memory Modelling over multiple sources of Free Association data. Two components were evaluated: Whether Quantum Inspired models of Target Activation would provide a better framework than their classical psychological counterparts and how robust these models are across the different sources of Free Association data. In previous work, a formal model of cued-target recall did not exist and as such Target Activation was unable to be assessed directly. Further to that, the data source used was suspected of suffering from temporal and geographical bias. As a consequence, Target Activation was measured against cued-target recall data as an approximation of performance. Since then, a formal model of cued-target recall (PIER3) has been developed [10] with alternative sources of data also becoming available. This allowed us to directly model target activation in cued-target recall with human cued-target recall pairs and use multiply sources of Free Association Data. Featural Characteristics known to be important to Target Activation were measured for each of the data sources to identify any major differences that may explain variations in performance for each of the models. Each of the activation models were used in the PIER3 memory model for each of the data sources and was benchmarked against cued-target recall pairs provided by the University of South Florida (USF). Two methods where used to evaluate performance. The first involved measuring the divergence between the sets of results using the Kullback Leibler (KL) divergence with the second utilizing a previous statistical analysis of the errors [9]. Of the three sources of data, two were sourced from human subjects being the USF Free Association Norms and the University of Leuven (UL) Free Association Networks. The third was sourced from a new method put forward by Galea and Bruza, 2015 in which pseudo Free Association Networks (Corpus Based Association Networks - CANs) are built using co-occurrence statistics on large text corpus. It was found that the Quantum Inspired Models of Target Activation not only outperformed the classical psychological model but was more robust across a variety of data sources.