781 resultados para Active Apperance Models
Resumo:
Jackson (2005) developed a hybrid model of personality and learning, known as the learning styles profiler (LSP) which was designed to span biological, socio-cognitive, and experiential research foci of personality and learning research. The hybrid model argues that functional and dysfunctional learning outcomes can be best understood in terms of how cognitions and experiences control, discipline, and re-express the biologically based scale of sensation-seeking. In two studies with part-time workers undertaking tertiary education (N equals 137 and 58), established models of approach and avoidance from each of the three different research foci were compared with Jackson's hybrid model in their predictiveness of leadership, work, and university outcomes using self-report and supervisor ratings. Results showed that the hybrid model was generally optimal and, as hypothesized, that goal orientation was a mediator of sensation-seeking on outcomes (work performance, university performance, leader behaviours, and counterproductive work behaviour). Our studies suggest that the hybrid model has considerable promise as a predictor of work and educational outcomes as well as dysfunctional outcomes.
Resumo:
Accurate prediction of incident duration is not only important information of Traffic Incident Management System, but also an ffective input for travel time prediction. In this paper, the hazard based prediction odels are developed for both incident clearance time and arrival time. The data are obtained from the Queensland Department of Transport and Main Roads’ STREAMS Incident Management System (SIMS) for one year ending in November 2010. The best fitting distributions are drawn for both clearance and arrival time for 3 types of incident: crash, stationary vehicle, and hazard. The results show that Gamma, Log-logistic, and Weibull are the best fit for crash, stationary vehicle, and hazard incident, respectively. The obvious impact factors are given for crash clearance time and arrival time. The quantitative influences for crash and hazard incident are presented for both clearance and arrival. The model accuracy is analyzed at the end.
Resumo:
Importance Active video games may offer an effective strategy to increase physical activity in overweight and obese children. However, the specific effects of active gaming when delivered within the context of a pediatric weight management program are unknown. Objective To evaluate the effects of active video gaming on physical activity and weight loss in children participating in an evidence-based weight management program delivered in the community. Design, Setting, and Participants Group-randomized clinical trial conducted during a 16-week period in YMCAs and schools located in Massachusetts, Rhode Island, and Texas. Seventy-five overweight or obese children (41 girls [55%], 34 whites [45%], 20 Hispanics [27%], and 17 blacks [23%]) enrolled in a community-based pediatric weight management program. Mean (SD) age of the participants was 10.0 (1.7) years; body mass index (BMI) z score, 2.15 (0.40); and percentage overweight from the median BMI for age and sex, 64.3% (19.9%). Interventions All participants received a comprehensive family-based pediatric weight management program (JOIN for ME). Participants in the program and active gaming group received hardware consisting of a game console and motion capture device and 1 active game at their second treatment session and a second game in week 9 of the program. Participants in the program-only group were given the hardware and 2 games at the completion of the 16-week program. Main Outcomes and Measures Objectively measured daily moderate-to-vigorous and vigorous physical activity, percentage overweight, and BMI z score. Results Participants in the program and active gaming group exhibited significant increases in moderate-to-vigorous (mean [SD], 7.4 [2.7] min/d) and vigorous (2.8 [0.9] min/d) physical activity at week 16 (P < .05). In the program-only group, a decline or no change was observed in the moderate-to-vigorous (mean [SD] net difference, 8.0 [3.8] min/d; P = .04) and vigorous (3.1 [1.3] min/d; P = .02) physical activity. Participants in both groups exhibited significant reductions in percentage overweight and BMI z scores at week 16. However, the program and active gaming group exhibited significantly greater reductions in percentage overweight (mean [SD], −10.9% [1.6%] vs −5.5% [1.5%]; P = .02) and BMI z score (−0.25 [0.03] vs −0.11 [0.03]; P < .001). Conclusions and Relevance Incorporating active video gaming into an evidence-based pediatric weight management program has positive effects on physical activity and relative weight.
Resumo:
Commodity price modeling is normally approached in terms of structural time-series models, in which the different components (states) have a financial interpretation. The parameters of these models can be estimated using maximum likelihood. This approach results in a non-linear parameter estimation problem and thus a key issue is how to obtain reliable initial estimates. In this paper, we focus on the initial parameter estimation problem for the Schwartz-Smith two-factor model commonly used in asset valuation. We propose the use of a two-step method. The first step considers a univariate model based only on the spot price and uses a transfer function model to obtain initial estimates of the fundamental parameters. The second step uses the estimates obtained in the first step to initialize a re-parameterized state-space-innovations based estimator, which includes information related to future prices. The second step refines the estimates obtained in the first step and also gives estimates of the remaining parameters in the model. This paper is part tutorial in nature and gives an introduction to aspects of commodity price modeling and the associated parameter estimation problem.
Resumo:
The suggested model for pro-matrix metalloproteinase-2 (proMMP-2) activation by membrane type 1 MMP (MT1-MMP) implicates the complex between MT1-MMP and tissue inhibitor of MMP-2 (TIMP-2) as a receptor for proMMP-2. To dissect this model and assess the pathologic significance of MMP-2 activation, an artificial receptor for proMMP-2 was created by replacing the signal sequence of TIMP-2 with cytoplasmic/transmembrane domain of type II transmembrane mosaic serine protease (MSP-T2). Unlike TIMP-2, MSP-T2 served as a receptor for proMMP-2 without inhibiting MT1-MMP, and generated TIMP-2-free active MMP-2 even at a low level of MT1-MMP. Thus, MSP-T2 did not affect direct cleavage of the substrate testican-1 by MT1-MMP, whereas TIMP-2 inhibited it even at the level that stimulates proMMP-2 processing. Expression of MSP-T2 in HT1080 cells enhanced MMP-2 activation by endogenous MT1-MMP and caused intensive hydrolysis of collagen gel. Expression of MSP-T2 in U87 glioma cells, which express a trace level of endogenous MT1-MMP, induced MMP-2 activation and enhanced cell-associated protease activity, activation of extracellular signal-regulated kinase, and metastatic ability into chick embryonic liver and lung. MT1-MMP can exert both maximum MMP-2 activation and direct cleavage of substrates with MSP-T2, which cannot be achieved with TIMP-2. These results suggest that MMP-2 activation by MT1-MMP potentially amplifies protease activity, and combination with direct cleavage of substrate causes effective tissue degradation and enhances tumor invasion and metastasis, which highlights the complex role of TIMP-2. MSP-T2 is a unique tool to analyze physiologic and pathologic roles of MMP-2 and MT1-MMP in comparison with TIMP-2.
Resumo:
The Construction industry accounts for a tenth of global GDP. Still, challenges such as slow adoption of new work processes, islands of information, and legal disputes, remain frequent, industry-wide occurrences despite various attempts to address them. In response, IT-based approaches have been adopted to explore collaborative ways of executing construction projects. Building Information Modelling (BIM) is an exemplar of integrative technologies whose 3D-visualisation capabilities have fostered collaboration especially between clients and design teams. Yet, the ways in which specification documents are created and used in capturing clients' expectations based on industry standards have remained largely unchanged since the 18th century. As a result, specification-related errors are still common place in an industry where vast amounts of information are consumed as well as produced in the course project implementation in the built environment. By implication, processes such as cost planning which depend on specification-related information remain largely inaccurate even with the use of BIM-based technologies. This paper briefly distinguishes between non-BIM-based and BIM-based specifications and reports on-going efforts geared towards the latter. We review exemplars aimed at extending Building Information Models to specification information embedded within the objects in a product library and explore a viable way of reasoning about a semi-automated process of specification using our product library.
Resumo:
The articles collected here in this special edition Epithelial-Mesenchymal (EMT) and Mesenchymal-Epithelial Transitions (MET) in Cancer provide a snapshot of the very rapidly progressing cinemascope of the involvement of these transitions in carcinoma progression. Pubmed analysis of EMT and cancer shows an exponential increase in the last few years in the number of papers and reviews published under these terms (Fig. 1). The last few years have seen these articles appearing in high calibre journals including Nature, Nature Cell Biology, Cancer Cell, PNAS, JNCI, JCI, and Cell, signaling the acceptance and quality of work in this field.
Resumo:
The purpose of this study was to compare the effects of two commonly utilised sleepiness countermeasures: a nap break and an active rest break. The effects of the countermeasures were evaluated by physiological (EEG), subjective, and driving performance measures. Participants completed two hours of simulated driving, followed by a 15 minute nap break or a 15 minute active rest break then completed the final hour of simulated driving. The nap break reduced EEG and subjective sleepiness. The active rest break did not reduce EEG sleepiness, with sleepiness levels eventually increasing, and resulted in an immediate reduction of subjective sleepiness. No difference was found between the two breaks for the driving performance measure. The immediate reduction of subjective sleepiness after the active rest break could leave drivers with erroneous perceptions of their sleepiness, particularly with increases of physiological sleepiness after the break.
Resumo:
We investigated the effects of the matrix metalloproteinase 13 (MMP13)-selective inhibitor, 5-(4-{4-[4-(4-fluorophenyl)-1,3-oxazol-2-yl]phenoxy}phenoxy)-5-(2-methoxyethyl) pyrimidine-2,4,6(1H,3H,5H)-trione (Cmpd-1), on the primary tumor growth and breast cancer-associated bone remodeling using xenograft and syngeneic mouse models. We used human breast cancer MDA-MB-231 cells inoculated into the mammary fat pad and left ventricle of BALB/c Nu/Nu mice, respectively, and spontaneously metastasizing 4T1.2-Luc mouse mammary cells inoculated into mammary fat pad of BALB/c mice. In a prevention setting, treatment with Cmpd-1 markedly delayed the growth of primary tumors in both models, and reduced the onset and severity of osteolytic lesions in the MDA-MB-231 intracardiac model. Intervention treatment with Cmpd-1 on established MDA-MB-231 primary tumors also significantly inhibited subsequent growth. In contrast, no effects of Cmpd-1 were observed on soft organ metastatic burden following intracardiac or mammary fat pad inoculations of MDA-MB-231 and 4T1.2-Luc cells respectively. MMP13 immunostaining of clinical primary breast tumors and experimental mice tumors revealed intra-tumoral and stromal expression in most tumors, and vasculature expression in all. MMP13 was also detected in osteoblasts in clinical samples of breast-to-bone metastases. The data suggest that MMP13-selective inhibitors, which lack musculoskeletal side effects, may have therapeutic potential both in primary breast cancer and cancer-induced bone osteolysis.
Resumo:
This study compared the determinants of physical activity in active and low-active African-American sixth grade students (N=108, 57 F, 51 M). Objective assessments of physical activity over a seven-day period were obtained using the CSA 7164 accelerometer. Students were classified as active if they exhibited three pr more 20-minute bouts of moderate to vigorous physical activity over the seven-day period. Relative to low-actives, active boys reported significantly higher levels of self-efficacy, greater involvement in community physical activity organizations, and were significantly more likely to perceive their mother us active. Relative to low-actives, active girls reported significantly higher levels of physical activity self-efficacy, greater positive beliefs regarding physical activity outcomes, and were significantly less likely to watch television or play video games for greater than or equal to 3 hrs/day. These observations provide preliminary guidance as to the design of physical activity interventions targeted at African-American youth.
Resumo:
Purpose To test the effects of a community-based physical activity intervention designed to increase physical activity and to conduct an extensive process evaluation of the intervention. Design Quasi-experimental. Setting Two rural communities in South Carolina. One community received the intervention, and the other served as the comparison. Subjects Public school students who were in fifth grade at the start of the study (558 at baseline) were eligible to participate. A total of 436 students participated over the course of the study. Intervention The intervention included after-school and summer physical activity programs and home, school, and community components designed to increase physical activity in youth. The intervention took place over an 18-month period. Measures. Students reported after-school physical activity at three data collection points (prior to, during, and following the intervention) using the Previous Day Physical Activity Recall (PDPAR). They also completed a questionnaire designed to measure hypothesized psychosocial and environmental determinants of physical activity behavior The process evaluation used meeting records, documentation of program activities, interviews, focus groups, and heart rate monitoring to evaluate the planning and implementation of the intervention. Results There were no significant differences in the physical activity variables and few significant differences in the psychosocial variables between the intervention and comparison groups. The process evaluation indicated that the after-school and summer physical activity component of the intervention was implemented as planned, but because of resource and time limitations, the home, school, and community components were not implemented as planned. Conclusions The intervention did not have a significant effect on physical activity in the target population of children in the intervention community. This outcome is similar to that reported in other studies of community-based physical activity intervention.
Resumo:
We construct a two-scale mathematical model for modern, high-rate LiFePO4cathodes. We attempt to validate against experimental data using two forms of the phase-field model developed recently to represent the concentration of Li+ in nano-sized LiFePO4crystals. We also compare this with the shrinking-core based model we developed previously. Validating against high-rate experimental data, in which electronic and electrolytic resistances have been reduced is an excellent test of the validity of the crystal-scale model used to represent the phase-change that may occur in LiFePO4material. We obtain poor fits with the shrinking-core based model, even with fitting based on “effective” parameter values. Surprisingly, using the more sophisticated phase-field models on the crystal-scale results in poorer fits, though a significant parameter regime could not be investigated due to numerical difficulties. Separate to the fits obtained, using phase-field based models embedded in a two-scale cathodic model results in “many-particle” effects consistent with those reported recently.
Resumo:
In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.
Resumo:
Most of existing motorway traffic safety studies using disaggregate traffic flow data aim at developing models for identifying real-time traffic risks by comparing pre-crash and non-crash conditions. One of serious shortcomings in those studies is that non-crash conditions are arbitrarily selected and hence, not representative, i.e. selected non-crash data might not be the right data comparable with pre-crash data; the non-crash/pre-crash ratio is arbitrarily decided and neglects the abundance of non-crash over pre-crash conditions; etc. Here, we present a methodology for developing a real-time MotorwaY Traffic Risk Identification Model (MyTRIM) using individual vehicle data, meteorological data, and crash data. Non-crash data are clustered into groups called traffic regimes. Thereafter, pre-crash data are classified into regimes to match with relevant non-crash data. Among totally eight traffic regimes obtained, four highly risky regimes were identified; three regime-based Risk Identification Models (RIM) with sufficient pre-crash data were developed. MyTRIM memorizes the latest risk evolution identified by RIM to predict near future risks. Traffic practitioners can decide MyTRIM’s memory size based on the trade-off between detection and false alarm rates. Decreasing the memory size from 5 to 1 precipitates the increase of detection rate from 65.0% to 100.0% and of false alarm rate from 0.21% to 3.68%. Moreover, critical factors in differentiating pre-crash and non-crash conditions are recognized and usable for developing preventive measures. MyTRIM can be used by practitioners in real-time as an independent tool to make online decision or integrated with existing traffic management systems.
Resumo:
Previous research has shown that early maturing girls at age I I have lower subsequent physical activity at age 13 in comparison to later maturing girls. Possible reasons for this association have not been assessed. This study examines girls' psychological response to puberty and their enjoyment of physical activity as intermediary factors linking pubertal maturation and physical activity. Participants included 178 girls who were assessed at age 11, of whom 168 were reassessed at age 13. All participants were non-Hispanic white and resided in the US. Three measures of pubertal development were obtained at age I I including Tanner breast stage, estradiol levels, and mothers' reports of girls' development on the Pubertal Development Scale (PDS). Measures of psychological well-being at ages I I and 13 included depression, global self-worth, perceived athletic competence, maturation fears, and body esteem. At age 13, girls' enjoyment of physical activity was assessed using the Physical Activity Enjoyment Scale and their daily minutes of moderate-to-vigorous physical activity (MVPA) were assessed using objective monitoring. Structural Equation Modeling was used to assess direct and indirect pathways between pubertal development at age I I and MVPA at age 13. In addition to a direct effect of pubertal development on MVPA, indirect effects were found for depression, global self-worth and maturity fears controlling for covariates. In each instance, more advanced pubertal development at age I I was associated with lower psychological wellbeing at age 13, which predicted lower enjoyment of physical activity at age 13 and in turn lower MVPA. Results from this study suggest that programs designed to increase physical activity among adolescent girls should address the self-consciousness and discontent that girls' experience with their bodies during puberty, particularly if they mature earlier than their peers, and identify activities or settings that make differences in body shape less conspicuous.