630 resultados para network traffic
Resumo:
The motivation for this analysis is the recently developed Excellence in Research for Australia (ERA) program developed to assess the quality of research in Australia. The objective is to develop an appropriate empirical model that better represents the underlying production of higher education research. In general, past studies on university research performance have used standard DEA models with some quantifiable research outputs. However, these suffer from the twin maladies of an inappropriate production specification and a lack of consideration of the quality of output. By including the qualitative attributes of peer-reviewed journals, we develop a procedure that captures both quality and quantity, and apply it using a network DEA model. Our main finding is that standard DEA models tend to overstate the research efficiency of most Australian universities.
Resumo:
Despite the extent of works done on modelling port water collisions, not much research effort has been devoted to modelling collisions at port anchorages. This paper aims to fill this important gap in literature by applying the Navigation Traffic Conflict Technique (NTCT) for measuring the collision potentials in anchorages and for examining the factors contributing to collisions. Grounding on the principles of the NTCT, a collision potential measurement model and a collision potential prediction model were developed. These models were illustrated by using vessel movement data of the anchorages in Singapore port waters. Results showed that the measured collision potentials are in close agreement with those perceived by harbour pilots. Higher collision potentials were found in anchorages attached to shoreline and international fairways, but not at those attached to confined water. Higher operating speeds, larger numbers of isolated danger marks and day conditions were associated with reduction in the collision potentials.
Resumo:
Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.
Resumo:
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 2.1 SD years; 193 male/279 female).Wecombined clustering with genome-wide scanning to find brain systems withcommongenetic determination.Wethen filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus.
Resumo:
Modern non-invasive brain imaging technologies, such as diffusion weighted magnetic resonance imaging (DWI), enable the mapping of neural fiber tracts in the white matter, providing a basis to reconstruct a detailed map of brain structural connectivity networks. Brain connectivity networks differ from random networks in their topology, which can be measured using small worldness, modularity, and high-degree nodes (hubs). Still, little is known about how individual differences in structural brain network properties relate to age, sex, or genetic differences. Recently, some groups have reported brain network biomarkers that enable differentiation among individuals, pairs of individuals, and groups of individuals. In addition to studying new topological features, here we provide a unifying general method to investigate topological brain networks and connectivity differences between individuals, pairs of individuals, and groups of individuals at several levels of the data hierarchy, while appropriately controlling false discovery rate (FDR) errors. We apply our new method to a large dataset of high quality brain connectivity networks obtained from High Angular Resolution Diffusion Imaging (HARDI) tractography in 303 young adult twins, siblings, and unrelated people. Our proposed approach can accurately classify brain connectivity networks based on sex (93% accuracy) and kinship (88.5% accuracy). We find statistically significant differences associated with sex and kinship both in the brain connectivity networks and in derived topological metrics, such as the clustering coefficient and the communicability matrix.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
Successful project management depends upon forming and maintaining relationships between and among project team members and stakeholder groups. The nature of these relationships and the patterns that they form affect communication, collaboration and resource flows. Networks affect us directly, and we use them to influence people and processes. Social Network Analysis (SNA) can be an extremely valuable research tool to better understand how critical social networks develop and influence work processes, particularly as projects become larger and more complex. This chapter introduces foundational network concepts, helps you determine if SNA could help you answer your research questions, and explains how to design and implement a social network study. At the end of this chapter, the reader can: understand foundational concepts about social networks; decide if SNA is an appropriate research methodology to address particular questions or problems; design and implement a basic social network study.
Resumo:
In recent years, rapid advances in information technology have led to various data collection systems which are enriching the sources of empirical data for use in transport systems. Currently, traffic data are collected through various sensors including loop detectors, probe vehicles, cell-phones, Bluetooth, video cameras, remote sensing and public transport smart cards. It has been argued that combining the complementary information from multiple sources will generally result in better accuracy, increased robustness and reduced ambiguity. Despite the fact that there have been substantial advances in data assimilation techniques to reconstruct and predict the traffic state from multiple data sources, such methods are generally data-driven and do not fully utilize the power of traffic models. Furthermore, the existing methods are still limited to freeway networks and are not yet applicable in the urban context due to the enhanced complexity of the flow behavior. The main traffic phenomena on urban links are generally caused by the boundary conditions at intersections, un-signalized or signalized, at which the switching of the traffic lights and the turning maneuvers of the road users lead to shock-wave phenomena that propagate upstream of the intersections. This paper develops a new model-based methodology to build up a real-time traffic prediction model for arterial corridors using data from multiple sources, particularly from loop detectors and partial observations from Bluetooth and GPS devices.
Resumo:
While enhanced cybersecurity options, mainly based around cryptographic functions, are needed overall speed and performance of a healthcare network may take priority in many circumstances. As such the overall security and performance metrics of those cryptographic functions in their embedded context needs to be understood. Understanding those metrics has been the main aim of this research activity. This research reports on an implementation of one network security technology, Internet Protocol Security (IPSec), to assess security performance. This research simulates sensitive healthcare information being transferred over networks, and then measures data delivery times with selected security parameters for various communication scenarios on Linux-based and Windows-based systems. Based on our test results, this research has revealed a number of network security metrics that need to be considered when designing and managing network security for healthcare-specific or non-healthcare-specific systems from security, performance and manageability perspectives. This research proposes practical recommendations based on the test results for the effective selection of network security controls to achieve an appropriate balance between network security and performance
Resumo:
Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.
Resumo:
Traffic congestion has been a growing issue in many metropolitan areas during recent years, which necessitates the identification of its key contributors and development of sustainable strategies to help decrease its adverse impacts on traffic networks. Road incidents generally and crashes specifically have been acknowledged as the cause of a large proportion of travel delays in urban areas and account for 25% to 60% of traffic congestion on motorways. Identifying the critical determinants of travel delays has been of significant importance to the incident management systems which constantly collect and store the incident duration data. This study investigates the individual and simultaneous differential effects of the relevant determinants on motorway crash duration probabilities. In particular, it applies parametric Accelerated Failure Time (AFT) hazard-based models to develop in-depth insights into how the crash-specific characteristic and the associated temporal and infrastructural determinants impact the duration. AFT models with both fixed and random parameters have been calibrated on one year of traffic crash records from two major Australian motorways in South East Queensland and the differential effects of determinants on crash survival functions have been studied on these two motorways individually. A comprehensive spectrum of commonly used parametric fixed parameter AFT models, including generalized gamma and generalized F families, have been compared to random parameter AFT structures in terms of goodness of fit to the duration data and as a result, the random parameter Weibull AFT model has been selected as the most appropriate model. Significant determinants of motorway crash duration included traffic diversion requirement, crash injury type, number and type of vehicles involved in a crash, day of week and time of day, towing support requirement and damage to the infrastructure. A major finding of this research is that the motorways under study are significantly different in terms of crash durations; such that motorway exhibits durations that are on average 19% shorter compared to the durations on motorway. The differential effects of explanatory variables on crash durations are also different on the two motorways. The detailed presented analysis confirms that, looking at the motorway network as a whole, neglecting the individual differences between roads, can lead to erroneous interpretations of duration and inefficient strategies for mitigating travel delays along a particular motorway.
Resumo:
BACKGROUND The workgroup of Traffic Psychology is concerned with the social, behavioral, and perceptual aspects that are associated with use and non-use of bicycle helmets, in their various forms and under various cycling conditions. OBJECTIVES The objectives of WG2 are to (1) share current knowledge among the people already working in the field, (2) suggest new ideas for research on and evaluation of the design of bicycle helmets, and (3) discuss options for funding of such research within the individual frameworks of the participants. Areas for research include 3.1. The patterns of use of helmets among different users: children, adults, and sports enthusiasts. 3.2. The use of helmets in different environments: rural roads, urban streets, and bike trails. 3.3. Concerns bicyclists have relative to their safety and convenience and the perceived impact of using helmets on comfort and convenience. 3.4. The benefit of helmets for enhancing visibility, and how variations in helmet design and colors affect daytime, nighttime, and dusktime visibility. 3.5. The role of helmets in the acceptance of city-wide pickup-and-drop-off bicycles. 3.6. The impact of helmets on visual search behaviour of bicyclists.
Resumo:
In an effort to understand the fundamental aspects of air quality in traffic tunnel environments, field campaigns were conducted to measure polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and other important pollutants within two traffic tunnels in Nam San (NS) and Hong Ji (HJ) in Korea in 2009 and 2010. The mean concentrations of ∑PCDD/Fs (in fg/m(3)) at the two tunnel sites were 1270 (± 880) and 1200 (± 810), respectively. These values were moderately lower than those measured at a non-tunnel urban background site (1350 (± 780) fg/m(3))--selected as a reference in this study. In addition, seasonal patterns of dioxin concentrations were clearly evident at the traffic tunnels like the urban reference site, showing higher levels during the winter (and spring) than the summer (and fall). The observed seasonal variations were driven by changes in the concentrations of ∑PCDF congeners, while ∑PCDD concentrations showed little seasonality. The results of our study suggest that there is no significant difference in source characteristics between the two investigated tunnel sites and urban location, although the role of gasoline and diesel fueled vehicles are considered as the major source in determining the PCDDs and PCDF levels in a tunnel environment. However, given the relative increase in other important ambient pollutant (e.g. PM10) concentrations over ∑PCDD/Fs in tunnel air (compared to urban background air), the balance of sources in tunnels is clearly different from those in urban air overall.