701 resultados para damage assessment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the Assessment and Feedback aspects of Studio Teaching as Creative Arts pedagogy. Prompted by USQ’s newly offered Bachelor of Creative Arts (BCA), the author has developed an Assessment Matrix specifically designed to satisfy a number of imperatives, including: • ‘objectifying’ the subjective aspects of creative practice as assessable coursework/research • providing the means by which accurate, detailed, personalised and confidential feedback may be provided to students individually • providing consistent, accurate, meaningful assessment records for student, lecturer, and institution • ensuring consistency, continuity, and transparency of assessment processes and records to satisfy quality audits • minimising marking and assessment time, whilst maximising assessment integrity and depth • requiring only basic level skills and knowledge of a computer application already in common use (Microsoft Excel) • adaptability to a range of creative courses ‐ across disciplines This Assessment Matrix has been in development (and trialled) since January 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, teachers’ enactment of assessment policy within demands for accountability and consistency of teacher judgements is considered. Evidence is drawn from a qualitative study involving 50 middle school teachers from Queensland, Australia, who participated in online social moderation meetings with teachers located in dispersed areas around the state. The study presents how travelling policy is embedded in local histories and cultures, in particular within systems of accountability; and the different layers of what may be considered ‘local’. The paper examines the intersections of travelling and embedded policy, and global and local contexts as these are enacted through online moderation meetings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Expectations held by health professionals and their patients are likely to affect treatment choices in subacute inpatient rehabilitation settings for older adults. There is a scarcity of empirical evidence evaluating whether health professionals expectations of the quality of their patients' future health states are accurate. METHODS A prospective longitudinal cohort investigation was implemented to examine agreement (kappa coefficients, exact agreement, limits-of-agreement, and intraclass-correlation coefficients) between physiotherapists' (n = 23) prediction of patients' discharge health-related quality of life (reported on the EQ-5D-3L) and the actual health-related quality of life self-reported by patients (n = 272) at their discharge assessment (using the EQ-5D-3L). The mini-mental state examination was used as an indicator of patients' cognitive ability. RESULTS Overall, 232 (85%) patients had all assessment data completed and were included in analysis. Kappa coefficients (exact agreement) ranged between 0.37-0.57 (58%-83%) across EQ-5D-3L domains in the lower cognition group and 0.53-0.68 (81%-85%) in the better cognition group. CONCLUSIONS Physiotherapists in this subacute rehabilitation setting predicted their patients' discharge health-related quality of life with substantial accuracy. Physiotherapists are likely able to provide their patients with sound information regarding potential recovery and health-related quality of life on discharge. The prediction accuracy was higher among patients with better cognition than patients with poorer cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of Wireless Sensor Networks (WSNs) for Structural Health Monitoring (SHM) has become a promising approach due to many advantages such as low cost, fast and flexible deployment. However, inherent technical issues such as data synchronization error and data loss have prevented these distinct systems from being extensively used. Recently, several SHM-oriented WSNs have been proposed and believed to be able to overcome a large number of technical uncertainties. Nevertheless, there is limited research examining effects of uncertainties of generic WSN platform and verifying the capability of SHM-oriented WSNs, particularly on demanding SHM applications like modal analysis and damage identification of real civil structures. This article first reviews the major technical uncertainties of both generic and SHM-oriented WSN platforms and efforts of SHM research community to cope with them. Then, effects of the most inherent WSN uncertainty on the first level of a common Output-only Modal-based Damage Identification (OMDI) approach are intensively investigated. Experimental accelerations collected by a wired sensory system on a benchmark civil structure are initially used as clean data before being contaminated with different levels of data pollutants to simulate practical uncertainties in both WSN platforms. Statistical analyses are comprehensively employed in order to uncover the distribution pattern of the uncertainty influence on the OMDI approach. The result of this research shows that uncertainties of generic WSNs can cause serious impact for level 1 OMDI methods utilizing mode shapes. It also proves that SHM-WSN can substantially lessen the impact and obtain truly structural information without having used costly computation solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 'human topoisomerase I (htopoI) damage response' was reported to be triggered by various kinds of DNA lesions. Also, a high and persistent level of htopoI cleavage complexes correlated with apoptosis. In the present study, we demonstrate that DNA damage-independent induction of cell death using colcemid and tumor necrosis factor is also accompanied by a strong htopoI response that correlates with the onset of apoptotic hallmarks. Consequently, these results suggest that htopoI cleavage complex formation may be caused by signaling pathways independent of the kind of cellular stress. Thus, protein interactions or signaling cascades induced by DNA damage or cellular stress might lead to the formation of stabilized cleavage complexes rather than the DNA lesion itself. Finally, we show that p53 not only plays a key role in the regulation of the htopoI response to UV-C irradiation but also to treatment with colcemid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that human topoisomerase I cleavage complexes form as a response to various DNA damages in vivo, the so called human topoisomerase I “damage response”. It was suggested that this damage response may play a role in DNA repair as well as in apoptosis, but only very few investigations have been done and the significance of the damage response still remains unclear. Here we demonstrate that human topoisomerase I cleavage complexes induced by high doses of UV irradiation are highly stable for up to 48 h. Furthermore, we show that human topoisomerase I cleavage complexes correlate with apoptosis. However, at low UV doses the cleavage complex level was very low and the complexes were repaired. Surprisingly, we found that high levels of stable cleavage complexes were not only found in UV-irradiated cells but also in untreated cells that underwent apoptosis. A possible role of human topoisomerase I in apoptosis is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freestanding membranes created from Bombyx mori silk fibroin (BMSF) offer a potential vehicle for corneal cell transplantation since they are transparent and support the growth of human corneal epithelial cells (HCE). Fibroin derived from the wild silkworm Antheraea pernyi (APSF) might provide a superior material by virtue of containing putative cell- attachment sites that are absent from BMSF. Thus we have investigated the feasibility of producing transparent, freestanding membranes from APSF and have analysed the behaviour of HCE cells on this material. No significant differences in cell numbers or phenotype were observed in short term HCE cell cultures established on either fibroin. Production of transparent freestanding APSF membranes, however, proved to be problematic as cast solutions of APSF were more prone to becoming opaque, displayed significantly lower permeability and were more brittle than BMSF-membranes. Cultures of HCE cells established on either membrane developed a normal stratified morphology with cytokeratin pair 3/12 being immuno-localized to the superficial layers. We conclude that while it is feasible to produce transparent freestanding membranes from APSF, the technical difficulties associated with this biomaterial, along with an absence of enhanced cell growth, currently favours the continued development of BMSF as a preferred vehicle for corneal cell transplantation. Nevertheless, it remains possible that refinement of techniques for processing APSF might yet lead to improvements in the handling properties and performance of this material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diabetic neuropathy is associated with increased morbidity and mortality. To date, limited data in subjects with impaired glucose tolerance and diabetes demonstrate nerve fiber repair after intervention. This may reflect a lack of efficacy of the interventions but may also reflect difficulty of the tests currently deployed to adequately assess nerve fiber repair, particularly in short-term studies. Corneal confocal microscopy (CCM) represents a novel noninvasive means to quantify nerve fiber damage and repair. Fifteen type 1 diabetic patients undergoing simultaneous pancreas-kidney transplantation (SPK) underwent detailed assessment of neurologic deficits, quantitative sensory testing (QST), electrophysiology, skin biopsy, corneal sensitivity, and CCM at baseline and at 6 and 12 months after successful SPK. At baseline, diabetic patients had a significant neuropathy compared with control subjects. After successful SPK there was no significant change in neurologic impairment, neurophysiology, QST, corneal sensitivity, and intraepidermal nerve fiber density (IENFD). However, CCM demonstrated significant improvements in corneal nerve fiber density, branch density, and length at 12 months. Normalization of glycemia after SPK shows no significant improvement in neuropathy assessed by the neurologic deficits, QST, electrophysiology, and IENFD. However, CCM shows a significant improvement in nerve morphology, providing a novel noninvasive means to establish early nerve repair that is missed by currently advocated assessment techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damages issues regarding the costs of raising the child argued in a case currently before the NSW Supreme Court - Waller v James litigation pre-dated the Health Care Liability Act 2001 and the Civil Liability Act 2002.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wrongful birth - assessment of damages - overview of damages issues raised in current and previous litigation - breach of duty and causation - cost of raising a child - key damages assessment issues - application of civil liability legislation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key aim of this research was to highlight how society's understanding of constraints to the productive capacity of its resource base is vital to its long-term survival. This was achieved through the development of an online model, the Carrying Capacity Dashboard. The Dashboard was developed to estimate how much land Australian populations require for the production of their food, textiles, timber and liquid fuel. Findings reveal that Australia's estimated carrying capacity is currently over 40 million people but longer-term and more regional analyses suggest a much smaller number. Carrying capacity assessment also indicates that optimal resource security is to be found in balancing both small and large-scale self-sufficiency.