724 resultados para committee name change
Resumo:
Background Demand for essential plasma-derived products is increasing. Purpose This prospective study aims to identify predictors of voluntary non-remunerated whole blood (WB) donors becoming plasmapheresis donors. Methods Surveys were sent to WB donors who had recently (recent n = 1,957) and not recently donated (distant n = 1,012). Theory of Planned Behavior (TPB) constructs (attitude, subjective norm, self-efficacy) were extended with moral norm, anticipatory regret, and donor identity. Intentions and objective plasmapheresis donation for 527 recent and 166 distant participants were assessed. Results Multi-group analysis revealed that the model was a good fit. Moral norm and self-efficacy were positively associated while role identity (suppressed by moral norm) was negatively associated with plasmapheresis intentions. Conclusions The extended TPB was useful in identifying factors that facilitate conversion from WB to plasmapheresis donation. A superordinate donor identity may be synonymous with WB donation and, for donors with a strong moral norm for plasmapheresis, may inhibit conversion.
Resumo:
In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.
Resumo:
In The Climate Change Review, Ross Garnaut emphasised that ‘Climate change and climate change mitigation will bring about major structural change in the agriculture, forestry and other land use sectors’. He provides this overview of the effects of climate change on food demand and supply: ‘Domestic food production in many developing countries will be at immediate risk of reductions in agricultural productivity due to crop failure, livestock loss, severe weather events and new patterns of pests and diseases.’ He observes that ‘Changes to local climate and water availability will be key determinants of where agricultural production occurs and what is produced.’ Gert Würtenberger has commented that modern plant breeding is particularly concerned with addressing larger issues about nutrition, food security and climate change: ‘Modern plant breeding has an increasing importance with regard to the continuously growing demand for plants for nutritional and feeding purposes as well as with regard to renewal energy sources and the challenges caused by climate changes.’ Moreover, he notes that there is a wide array of scientific and technological means of breeding new plant varieties: ‘Apart from classical breeding, technologies have an important role in the development of plants that satisfy the various requirements that industrial and agricultural challenges expect to be fulfilled.’ He comments: ‘Plant variety rights, as well as patents which protect such results, are of increasingly high importance to the breeders and enterprises involved in plant development programmes.’ There has been larger interest in the intersections between sustainable agriculture, environmental protection and food security. The debate over agricultural intellectual property is a polarised one, particularly between plant breeders, agricultural biotechnology companies and a range of environmentalist groups. Susan Sell comments that there are complex intellectual property battles surrounding agriculture: 'Seeds are at the centre of a complex political dynamic between stakeholders. Access to seeds concerns the balance between private rights and public obligations, private ownership and the public domain, and commercial versus humanitarian objectives.' Part I of this chapter considers debates in respect of plant breeders’ rights, food security and climate change in relation to the UPOV Convention 1991. Part II explores efforts by agricultural biotechnology companies to patent climate-ready crops. Part III considers the report of the Special Rapporteur for Food, Olivier De Schutter. It looks at a variety of options to encourage access to plant varieties with climate adaptive or mitigating properties.
Resumo:
"It could easily provide the back-drop for a James Bond movie. Deep inside a mountain near the North Pole, down a fortified tunnel, and behind airlocked doors in a vault frozen to -18 degrees Celsius, scientists are squirreling away millions of seed samples. The samples constitute the very foundation of agriculture, the biological diversity needed so the world's major food crops can adapt to the next pest or disease, or to climate change. It's little wonder that the Svalbard Global Seed Vault has captured the public's imagination more than almost any agricultural topic in recent years. Popular press reports about the ‘Doomsday Vault,’ however, typically mask the complexity of the endeavor and, if anything, underestimate its practical utility." Cary Fowler This chapter considers the use of seed banks to address concerns about intellectual property, climate change and food security. It has a number of themes. First of all, it is interested in the use of ‘Big Science’ projects to address pressing global scientific concerns and Millennium Development Goals. Second, it highlights the increasing use of banks as a means of managing both property and intellectual property across a wide range of fields of agriculture and biotechnology. Third, it considers the linkage of intellectual property, access to genetic resources and benefit sharing. There are a variety of positions in this debate. Some see requirements in respect of access to genetic resources and benefit sharing as an inconvenient burden for science and commerce. Others defend access to genetic resources and benefit sharing as meaningful and productive. Those inclined to somewhat more conspiratorial views suggest that access to genetic resources and benefit sharing are a ruse to facilitate biopiracy. This chapter has a number of components. Section I focuses upon the Consultative Group on International Agricultural Research (CGIAR) network – often raised as a model for Climate Innovation Centres. Section II considers the Svalbard Global Seed Vault – the so-called Doomsday Vault. After a consideration of the World Summit on Food Security in 2009, it is concluded in this chapter that any future international agreement on climate change needs to address intellectual property, plant genetic resources and food security.
Resumo:
Abbe Brown from the University of Aberdeen, Scotland, is one of the leading international researchers on intellectual property and climate change. She is an intellectual dynamo. Her work brings together a mastery of intellectual property, with a strong interest in innovation theory and practice, and an engagement with public policy issues surrounding human rights, competition policy, and access to knowledge. Abbe Brown has shown a particular aptitude for tackling big ideas and wicked global problems, with intelligence, gusto, insight, and formidable wisdom.
Resumo:
There has been an increasing focus upon the role of cities and local government in respect of action upon climate change...
Resumo:
This year, there has been great debate over whether Norway’s Sovereign Wealth Fund should invest in renewable energy; divest from fossil fuels; and engage in ethical investment...
Resumo:
Patent law is a regime of intellectual property, which provides exclusive rights regarding scientific inventions, which are novel, inventive, and useful. There has been much debate over the limits of patentable subject matter relating to emerging technologies. The Supreme Court of the US has sought to rein in the expansive interpretation of patentability by lower courts in a series of cases dealing with medical information (Prometheus), finance (Bilski), and gene patents (Myriad). This has led to a reinvigoration of the debate over the boundaries of patentable subject matter. There has been controversy about the rise in patenting of geoengineering - particularly by firms such as Intellectual Ventures.
Resumo:
This article charts the conflicted, dissonant policies of the European Union towards intellectual property and climate change. It contends that there is a mismatch between the empirical work of the European Patent Office and the quietist policy options contemplated by the European Union. This article contends that the European Union needs to develop a Clean Technology Directive to allow for a differentiated approach to patent law and clean technologies - especially given the past complicity of the European Union in global warming and climate change. It highlights essential elements in a comprehensive policy package for the reform of patent law - considering patentable subject matter; patent incentives; and patent exceptions.
Resumo:
In light of larger public policy debates over intellectual property and climate change, this article considers patent practice, law, and policy in respect of biofuels. This debate has significant implications for public policy discussions in respect of energy independence, food security, and climate change. The first section of the paper provides a network analysis of patents in respect of biofuels across the three generations. It provides empirical research in respect of patent subject matter, ownership, and strategy in respect of biofuels. The second section provides a case study of significant patent litigation over biofuels. There is an examination of the biofuels patent litigation between the Danish company Novozymes, and Danisco and DuPont. The third section examines flexibilities in respect of patent law and clean technologies in the context of the case study of biofuels. In particular, it explores the debate over substantive doctrinal matters in respect of biofuels – such as patentable subject matter, technology transfer, patent pools, compulsory licensing, and disclosure requirements. The conclusion explores the relevance of the debate over patent law and biofuels to the larger public policy discussions over energy independence, food security, and climate change.
Resumo:
Of late, there has been a growth in cultural expression about climate change – with the rise of climate fiction (‘cli-fi’); art and photography responding to changes in nature; musical anthems about climate change; plays and dramas about climate change; and environmental documentaries, and climate cinema. Drawing comparisons to past controversies over cultural funding, this paper considers the cultural wars over climate change. This article considers a number of cultural fields. Margaret Atwood made an important creative and critical contribution to the debate over climate change. The work examines Ian McEwan's novel, Solar, a tragi-comedy about authorship, invention, intellectual property, and climate science. After writing a history of Merchants of Doubt, Naomi Oreskes and Erik Conway have experimented with fiction – as well as history. This article focuses upon artistic works about climate change. It analyses James Balog’s work with the Extreme Ice Survey, which involved photography of glaciers under retreat in a warming world. The work was turned into a documentary called Chasing Ice. It also considers the artistic project of 350.org 'to transform the human rights and environmental issues connected to climate change into powerful art that gets people to stop, think and act.' The paper examines musical storytelling in respect of climate change. The paper explores dramatic works about climate change including Steve Waters' The Contingency Plan, Stephen Emmott's Ten Billion, and Andrew Bovell's When the Rain Stops Falling and Hannie Rayson’s Extinction. The paper also examines the role of documentary film-making. It also considers the cinematographic film, Beasts of the Southern Wild. Such a survey will enable a consideration of the larger question of whether creative art about climate change matters; and whether it is deserving of public funding.