675 resultados para Cost leadership strategy
Resumo:
This project provides a costed and appraised set of management strategies for mitigating threats to species of conservation significance in the Pilbara IBRA bioregion of Western Australia (hereafter 'the Pilbara'). Conservation significant species are either listed under federal and state legislation, international agreements or considered likely to be threatened in the next 20 years. Here we report on the 17 technically and socially feasible management strategies, which were drawn from the collective experience and knowledge of 49 experts and stakeholders in the ecology and management of the Pilbara region. We determine the relative ecological cost-effectiveness of each strategy, calculated as the expected benefit of management to the persistence of 53 key threatened native fauna and flora species, divided by the expected cost of management. Finally we provide decision support to assist prioritisation of the strategies on the basis of ecological cost-effectiveness.
Resumo:
INTRODUCTION: Increasing health care costs, limited resources and increased demand makes cost effective and cost-efficient delivery of Adolescent Idiopathic Scoliosis (AIS) management paramount. Rising implant costs in deformity correction surgery have prompted analysis of whether high implant densities are justified. The objective of this study was to analyse the costs of thoracoscopic scoliosis surgery, comparing initial learning curve costs with those of the established technique and to the costs involved in posterior instrumented fusion from the literature. METHODS: 189 consecutive cases from April 2000 to July 2011 were assessed with a minimum of 2 years follow-up. Information was gathered from a prospective database covering perioperative factors, clinical and radiological outcomes, complications and patient reported outcomes. The patients were divided into three groups to allow comparison; 1. A learning curve cohort, 2. An intermediate cohort and 3. A third cohort of patients, using our established technique. Hospital finance records and implant manufacturer figures were corrected to 2013 costs. A literature review of AIS management costs and implant density in similar curve types was performed. RESULTS: The mean pre-op Cobb angle was 53°(95%CI 0.4) and was corrected postop to mean 22.9°(CI 0.4). The overall complication rate was 20.6%, primarily in the first cohort, with a rate of 5.6% in the third cohort. The average total costs were $46,732, operating room costs of $10,301 (22.0%) and ICU costs of $4620 (9.8%). The mean number of screws placed was 7.1 (CI 0.04) with a single rod used for each case giving average implant costs of $14,004 (29.9%). Comparison of the three groups revealed higher implant costs as the technique evolved to that in use today, from $13,049 in Group 1 to $14577 in Group 3 (P<0.001). Conversely operating room costs reduced from $10,621 in Group 1 to $7573 (P<0.001) in Group 3. ICU stay was reduced from an average of 1.2 to 0 days. In-patient stay was significantly (P=0.006) lower in Groups 2 and 3 (5.4 days) than Group 1 (5.9 days) (i.e. a reduction in cost of approximately $6,140). CONCLUSIONS: The evolution of our thoracoscopic anterior scoliosis correction has resulted in an increase in the number of levels fused and reduction in complication rate. Implant costs have risen as a result, however, there has been a concurrent decrease in those costs generated by operating room use, ICU and in-patient stay with increasing experience. Literature review of equivalent curve types treated posteriorly shows similar perioperative factors but higher implant density, 69-83% compared to the 50% in this study. Thoracoscopic Scoliosis surgery presents a low density, reliable, efficient and effective option for selected curves. A cost analysis of Thoracoscopic Scoliosis Surgery using financial records and a prospectively collected database of all patients since 2000, demonstrating a clear cost advantage compared to equivalent posterior instrumentation and fusion.
Resumo:
Level crossing risk continues to be a significant safety concern for the security of rail operations around the world. Over the last decade or so, a third of railway related fatalities occurred as a direct result of collisions between road and rail vehicles in Australia. Importantly, nearly half of these collisions occurred at railway level crossings with no active protection, such as flashing lights or boom barriers. Current practice is to upgrade level crossings that have no active protection. However, the total number of level crossings found across Australia exceed 23,500, and targeting the proportion of these that are considered high risk (e.g. public crossings with passive controls) would cost in excess of AU$3.25 billion based on equipment, installation and commissioning costs of warning devices that are currently type approved. Level crossing warning devices that are low-cost provide a potentially effective control for reducing risk; however, over the last decade, there have been significant barriers and legal issues in both Australia and the US that have foreshadowed their adoption. These devices are designed to have significantly lower lifecycle costs compared with traditional warning devices. They often make use of use of alternative technologies for train detection, wireless connectivity and solar energy supply. This paper describes the barriers that have been encountered for the adoption of these devices in Australia, including the challenges associated with: (1) determining requisite safety levels for such devices; (2) legal issues relating to duty of care obligations of railway operators; and (3) issues of Tort liability around the use of less than fail-safe equipment. This paper provides an overview of a comprehensive safety justification that was developed as part of a project funded by a collaborative rail research initiative established by the Australian government, and describes the conceptual framework and processes being used to justify its adoption. The paper provides a summary of key points from peer review and discusses prospective barriers that may need to be overcome for future adoption. A successful outcome from this process would result in the development of a guideline for decision-making, providing a precedence for adopting low-cost level crossing warning devices in other parts of the world. The framework described in this paper also provides relevance to the review and adoption of analogous technologies in rail and other safety critical industries.
Resumo:
During the early design stages of construction projects, accurate and timely cost feedback is critical to design decision making. This is particularly challenging for cost estimators, as they must quickly and accurately estimate the cost of the building when the design is still incomplete and evolving. State-of-the-art software tools typically use a rule-based approach to generate detailed quantities from the design details present in a building model and relate them to the cost items in a cost estimating database. In this paper, we propose a generic approach for creating and maintaining a cost estimate using flexible mappings between a building model and a cost estimate. The approach uses queries on the building design that are used to populate views, and each view is then associated with one or more cost items. The benefit of this approach is that the flexibility of modern query languages allows the estimator to encode a broad variety of relationships between the design and estimate. It also avoids the use of a common standard to which both designers and estimators must conform, allowing the estimator added flexibility and functionality to their work.
Resumo:
Building Information Modelling (BIM) has been regarded as a one stop shop capable of addressing the ills of the construction industry. Yet, while some firms have accepted BIM as a new way to work and gone on to record success, others (which have not so done) have raised such questions as: ‘How is BIM defined? Is it a tool or a process? Which kinds and sizes of organisations stand to benefit from BIM?’ These questions form the basis of this research. Hence, having explored the relevant body of literature, this research investigates three organisations within the UK – described as the earliest adopters of BIM – and considers how they have fared in terms of project performance in the years since adopting BIM; focusing on project cost, delivery time and quality achievement. This investigation also probed two of the leading voices in BIM in the UK in search of the much needed answers. The findings of the research show that successful projects executed in the organisations that have used BIM is predicated on its adoption as a process, rather than as a tool of technology; a process that changes the way work in the construction industry is typically done. Moreover, the successes recorded in the firms researched give credence to project success consequent upon adopting BIM. Nevertheless, the findings of this research show that the cornerstone of this success is leadership-driven innovation.
Resumo:
ROBERT EVAPORATORS in Australian sugar factories are traditionally constructed with 44.45 mm outside diameter stainless steel tubes of ~2 m length for all stages of evaporation. There are a few vessels with longer tubes (up to 2.8 m) and smaller and larger diameters (38.1 and 50.8 mm). Queensland University of Technology is undertaking a study to investigate the heat transfer performance of tubes of different lengths and diameters for the whole range of process conditions typically encountered in the evaporator set. Incorporation of these results into practical evaporator designs requires an understanding of the cost implications for constructing evaporator vessels with calandrias having tubes of different dimensions. Cost savings are expected for tubes of smaller diameter and longer length in terms of material, labour and installation costs in the factory. However these savings must be considered in terms of the heat transfer area requirements for the evaporation duty, which will likely be a function of the tube dimensions. In this paper a capital cost model is described which provides a relative cost of constructing and installing Robert evaporators of the same heating surface area but with different tube dimensions. Evaporators of 2000, 3000, 4000 and 5000 m2 are investigated. This model will be used in conjunction with the heat transfer efficiency data (when available) to determine the optimum tube dimensions for a new evaporator at a specified evaporation duty. Consideration is also given to other factors such as juice residence time (and implications for sucrose degradation and control) and droplet de-entrainment in evaporators of different tube dimensions.
Resumo:
Objective To summarise how costs and health benefits will change with the adoption of total laparoscopic hysterectomy compared to total abdominal hysterectomy for the treatment of early stage endometrial cancer. Design Cost-effectiveness modelling using the information from a randomised controlled trial. Participants Two hypothetical modelled cohorts of 1000 individuals undergoing total laparoscopic hysterectomy and total abdominal hysterectomy. Outcome measures Surgery costs; hospital bed days used; total healthcare costs; quality-adjusted life years; and net monetary benefits. Results For 1000 individuals receiving total laparoscopic hysterectomy surgery, the costs were $509 575 higher, 3548 hospital fewer bed days were used and total health services costs were reduced by $3 746 221. There were 39.13 more quality-adjusted life years for a 5 year period following surgery. Conclusions The adoption of total laparoscopic hysterectomy is almost certainly a good decision for health services policy makers. There is 100% probability that it will be cost saving to health services, a 86.8% probability that it will increase health benefits and a 99.5% chance that it returns net monetary benefits greater than zero.
Resumo:
Aims To provide the best available evidence to determine the impact of nurse practitioner services on cost, quality of care, satisfaction and waiting times in the emergency department for adult patients. Background The delivery of quality care in the emergency department is one of the most important service indicators in health delivery. Increasing service pressures in the emergency department have resulted in the adoption of service innovation models: the most common and rapidly expanding of these is emergency nurse practitioner services. The rapid uptake of emergency nurse practitioner service in Australia has outpaced the capacity to evaluate this service model in terms of outcomes related to safety and quality of patient care. Previous research is now outdated and not commensurate with the changing domain of delivering emergency care with nurse practitioner services. Data A comprehensive search of four electronic databases from 2006-‐2013 was conducted to identify research evaluating nurse practitioner service impact in the emergency department. English language articles were sought using MEDLINE, CINAHL, Embase and Cochrane and included two previous systematic reviews completed five and seven years ago. Methods A three step approach was used. Following a comprehensive search, two reviewers assessed identified studies against the inclusion criteria. From the original 1013 studies, 14 papers were retained for critical appraisal on methodological quality by two independent reviewers and data extracted using standardised tools. Results Narrative synthesis was conducted to summarise and report the findings as insufficient data was available for meta-‐analysis of results. This systematic review has shown that emergency nurse practitioner service has a positive impact on quality of care, patient satisfaction and waiting times. There was insufficient evidence to draw conclusions regarding impact on costs. Conclusion Synthesis of the available research attempts to provide an evidence base for emergency nurse practitioner service to guide healthcare leaders, policy makers and clinicians in reforming emergency department service provision. The findings suggest that further quality research is required for comparative measures of clinical and service effectiveness of emergency nurse practitioner service. In the context of increased health service demand and the need to provide timely and effective care to patients, such measures will assist in delivering quality patient care.
Resumo:
Purpose This study explores recent claims that humans exhibit a minimum cost of transport (CoTmin) for running which occurs at an intermediate speed, and assesses individual physiological, gait and training characteristics. Methods Twelve healthy participants with varying levels of fitness and running experience ran on a treadmill at six self-selected speeds in a discontinuous protocol over three sessions. Running speed (km[middle dot]hr-1), V[spacing dot above]O2 (mL[middle dot]kg-1[middle dot]km-1), CoT (kcal[middle dot]km-1), heart rate (beats[middle dot]min-1) and cadence (steps[middle dot]min-1) were continuously measured. V[spacing dot above]O2 max was measured on a fourth testing session. The occurrence of a CoTmin was investigated and its presence or absence examined with respect to fitness, gait and training characteristics. Results Five participants showed a clear CoTmin at an intermediate speed and a statistically significant (p < 0.05) quadratic CoT-speed function, while the other participants did not show such evidence. Participants were then categorized and compared with respect to the strength of evidence for a CoTmin (ClearCoTmin and NoCoTmin). The ClearCoTmin group displayed significantly higher correlation between speed and cadence; more endurance training and exercise sessions per week; than the NoCoTmin group; and a marginally non-significant but higher aerobic capacity. Some runners still showed a CoTmin at an intermediate speed even after subtraction of resting energy expenditure. Conclusion The findings confirm the existence of an optimal speed for human running, in some but not all participants. Those exhibiting a COTmin undertook a higher volume of running, ran with a cadence that was more consistently modulated with speed, and tended to be aerobically fitter. The ability to minimise the energetic cost of transport appears not to be ubiquitous feature of human running but may emerge in some individuals with extensive running experience.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
In the electricity market environment, load-serving entities (LSEs) will inevitably face risks in purchasing electricity because there are a plethora of uncertainties involved. To maximize profits and minimize risks, LSEs need to develop an optimal strategy to reasonably allocate the purchased electricity amount in different electricity markets such as the spot market, bilateral contract market, and options market. Because risks originate from uncertainties, an approach is presented to address the risk evaluation problem by the combined use of the lower partial moment and information entropy (LPME). The lower partial moment is used to measure the amount and probability of the loss, whereas the information entropy is used to represent the uncertainty of the loss. Electricity purchasing is a repeated procedure; therefore, the model presented represents a dynamic strategy. Under the chance-constrained programming framework, the developed optimization model minimizes the risk of the electricity purchasing portfolio in different markets because the actual profit of the LSE concerned is not less than the specified target under a required confidence level. Then, the particle swarm optimization (PSO) algorithm is employed to solve the optimization model. Finally, a sample example is used to illustrate the basic features of the developed model and method.
Resumo:
A strategy sets out the actions an organisation intends to take to achieve a particular goal, such as improved food safety practices. The development of a strategy allows the organisation to review and improve their existing operations, identify and implement new strategies, prioritise actions and strategically allocate resources to maximise efficiency and effectiveness. Implementing a holistic food safety strategy will help local governments continually improve their performance in this area. To support local governments develop a holistic food safety strategy a customisable template has been developed as part of the research project ‘Food Safety: Maximising Impact by Understanding the Food Business Context’ (more information about the research project is available online at www.acelg.org.au/foodsafety).
Resumo:
Recurrent congestion caused by high commuter traffic is an irritation to motorway users. Ramp metering (RM) is the most effective motorway control means (M Papageorgiou & Kotsialos, 2002) for significantly reducing motorway congestion. However, given field constraints (e.g. limited ramp space and maximum ramp waiting time), RM cannot eliminate recurrent congestion during the increased long peak hours. This paper, therefore, focuses on rapid congestion recovery to further improve RM systems: that is, to quickly clear congestion in recovery periods. The feasibility of using RM for recovery is analyzed, and a zone recovery strategy (ZRS) for RM is proposed. Note that this study assumes no incident and demand management involved, i.e. no re-routing behavior and strategy considered. This strategy is modeled, calibrated and tested in the northbound model of the Pacific Motorway, Brisbane, Australia in a micro-simulation environment for recurrent congestion scenario, and evaluation results have justified its effectiveness.
Resumo:
Organisations are constantly seeking new ways to improve operational efficiencies. This research study investigates a novel way to identify potential efficiency gains in business operations by observing how they are carried out in the past and then exploring better ways of executing them by taking into account trade-offs between time, cost and resource utilisation. This paper demonstrates how they can be incorporated in the assessment of alternative process execution scenarios by making use of a cost environment. A genetic algorithm-based approach is proposed to explore and assess alternative process execution scenarios, where the objective function is represented by a comprehensive cost structure that captures different process dimensions. Experiments conducted with different variants of the genetic algorithm evaluate the approach's feasibility. The findings demonstrate that a genetic algorithm-based approach is able to make use of cost reduction as a way to identify improved execution scenarios in terms of reduced case durations and increased resource utilisation. The ultimate aim is to utilise cost-related insights gained from such improved scenarios to put forward recommendations for reducing process-related cost within organisations.