695 resultados para Child restraint system
Resumo:
There are emerging movements in several countries to improve policy and practice to protect children from exposure to domestic violence. These movements have resulted in the collection of new data on EDV and the design and implementation of new child welfare policies and practices. To assist with the development of child welfare practice, this article summarizes current knowledge on the prevalence of EDV, and on child welfare services policies and practices that may hold promise for reducing the frequency and impact of EDV on children. We focus on Australia, Canada, and the United States, as these countries share a similar socio-legal context, a long history of enacting and expanding legislation about reporting of maltreatment, debates regarding the application of reporting laws to EDV, and new child welfare practices that show promise for responding more effectively to EDV.
Resumo:
Airports represent the epitome of complex systems with multiple stakeholders, multiple jurisdictions and complex interactions between many actors. The large number of existing models that capture different aspects of the airport are a testament to this. However, these existing models do not consider in a systematic sense modelling requirements nor how stakeholders such as airport operators or airlines would make use of these models. This can detrimentally impact on the verification and validation of models and makes the development of extensible and reusable modelling tools difficult. This paper develops from the Concept of Operations (CONOPS) framework a methodology to help structure the review and development of modelling capabilities and usage scenarios. The method is applied to the review of existing airport terminal passenger models. It is found that existing models can be broadly categorised according to four usage scenarios: capacity planning, operational planning and design, security policy and planning, and airport performance review. The models, the performance metrics that they evaluate and their usage scenarios are discussed. It is found that capacity and operational planning models predominantly focus on performance metrics such as waiting time, service time and congestion whereas performance review models attempt to link those to passenger satisfaction outcomes. Security policy models on the other hand focus on probabilistic risk assessment. However, there is an emerging focus on the need to be able to capture trade-offs between multiple criteria such as security and processing time. Based on the CONOPS framework and literature findings, guidance is provided for the development of future airport terminal models.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
Recent increases in cycling have led to many media articles highlighting concerns about interactions between cyclists and pedestrians on footpaths and off-road paths. Under the Australian Road Rules, adults are not allowed to ride on footpaths unless accompanying a child 12 years of age or younger. However, this rule does not apply in Queensland. This paper reviews international studies that examine the safety of footpath cycling for both cyclists and pedestrians, and relevant Australian crash and injury data. The results of a survey of more than 2,500 Queensland adult cyclists are presented in terms of the frequency of footpath cycling, the characteristics of those cyclists and the characteristics of self-reported footpath crashes. A third of the respondents reported riding on the footpath and, of those, about two-thirds did so reluctantly. Riding on the footpath was more common for utilitarian trips and for new riders, although the average distance ridden on footpaths was greater for experienced riders. About 5% of distance ridden and a similar percentage of self-reported crashes occurred on footpaths. These data are discussed in terms of the Safe Systems principle of separating road users with vastly different levels of kinetic energy. The paper concludes that footpaths are important facilities for both inexperienced and experienced riders and for utilitarian riding, especially in locations riders consider do not provide a safe system for cycling.
Resumo:
A new system is described for estimating volume from a series of multiplanar 2D ultrasound images. Ultrasound images are captured using a personal computer video digitizing card and an electromagnetic localization system is used to record the pose of the ultrasound images. The accuracy of the system was assessed by scanning four groups of ten cadaveric kidneys on four different ultrasound machines. Scan image planes were oriented either radially, in parallel or slanted at 30 C to the vertical. The cross-sectional images of the kidneys were traced using a mouse and the outline points transformed to 3D space using the Fastrak position and orientation data. Points on adjacent region of interest outlines were connected to form a triangle mesh and the volume of the kidneys estimated using the ellipsoid, planimetry, tetrahedral and ray tracing methods. There was little difference between the results for the different scan techniques or volume estimation algorithms, although, perhaps as expected, the ellipsoid results were the least precise. For radial scanning and ray tracing, the mean and standard deviation of the percentage errors for the four different machines were as follows: Hitachi EUB-240, −3.0 ± 2.7%; Tosbee RM3, −0.1 ± 2.3%; Hitachi EUB-415, 0.2 ± 2.3%; Acuson, 2.7 ± 2.3%.
Resumo:
Design-build (DB) project delivery systems have increasingly been adopted by many private and public sector organizations worldwide due to the many advantages offered on projects by such systems. However, many Indonesian road infrastructure projects are still delivered using the traditional design-bid-build (DBB) project delivery system. In order to provide evidence of the benefits of DB, it is essential to identify the factors that can contribute to successful DB implementation and this paper aims to provide evidence of such factors that can promote the successful implementation of DB project delivery systems on Indonesian road infrastructure projects. Four main factors and 28 indicators were identified from an extensive literature review, and a Delphi questionnaire survey was conducted amongst 20 experts drawn from the Indonesian road infrastructure construction sector. The first round Delphi study found that regulation, competency of clients, ability to manage DB projects and external conditions were the major factors that can promote successful DB implementation.
Resumo:
Experts’ views and commentary have been highly respected in every discipline. However, unlike traditional disciplines like medicine, mathematics and engineering, Information System (IS) expertise is difficult to define. Despite seeking expert advice and views is common in the areas of IS project management, system implementations and evaluations. This research-in-progress paper attempts to understand the characteristics of IS-expert through a comprehensive literature review of analogous disciplines and then derives a formative research model with three main constructs. A validated construct of expertise of IS will have a wide range of implications for research and practice.
Resumo:
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Resumo:
U-Healthcare means that it provides healthcare services "at anytime and anywhere" using wired, wireless and ubiquitous sensor network technologies. As a main field of U-healthcare, Telehealth has been developed as an enhancement of Telemedicine. This system includes two-way interactive web-video communications, sensor technology, and health informatics. With these components, it will assist patients to receive their first initial diagnosis. Futhermore, Telehealth will help doctors diagnose patient's diseases at early stages and recommend treatments to patients. However, this system has a few limitations such as privacy issues, interruption of real-time service and a wrong ordering from remote diagnosis. To deal with those flaws, security procedures such as authorised access should be applied to as an indispensible component in medical environment. As a consequence, Telehealth system with these protection procedures in clinical services will cope with anticipated vulnerabilities of U-Healthcare services and security issues involved.
Small-signal stability analysis of a DFIG-based wind power system under different modes of operation
Resumo:
This paper focuses on the super/subsynchronous operation of the doubly fed induction generator (DFIG) system. The impact of a damping controller on the different modes of operation for the DFIG-based wind generation system is investigated. The coordinated tuning of the damping controller to enhance the damping of the oscillatory modes using bacteria foraging technique is presented. The results from eigenvalue analysis are presented to elucidate the effectiveness of the tuned damping controller in the DFIG system. The robustness issue of the damping controller is also investigated.
Resumo:
Load modelling plays an important role in power system dynamic stability assessment. One of the widely used methods in assessing load model impact on system dynamic response is parametric sensitivity analysis. A composite load model-based load sensitivity analysis framework is proposed. It enables comprehensive investigation into load modelling impacts on system stability considering the dynamic interactions between load and system dynamics. The effect of the location of individual as well as patches of composite loads in the vicinity on the sensitivity of the oscillatory modes is investigated. The impact of load composition on the overall sensitivity of the load is also investigated.
Resumo:
Public health decision making is critically dependant on accurate, timely and reliable information. There is a widespread belief that most of the national and sub-national health information systems fail in providing much needed information support for evidence based health planning and interventions. This situation is more acute in developing nations where resources are either stagnant or decreasing, coupled with the situations of demographic transition and double burden of diseases. Literature abounds with publications, which provide information on misguided health interventions in developing nations, leading to failure and waste of resources. Health information system failure is widely blamed for this situation. Nevertheless, there is a dearth of comprehensive evaluations of existing national or sub-national health information systems, especially in the region of South-East Asia. This study makes an attempt to bridge this knowledge gap by evaluating a regional health information system in Sri Lanka. It explores the strengths and weaknesses of the current health information system and related causative factors in a decentralised health system and then proposes strategic recommendations for reform measures. A mix methodological and phased approach was adopted to reach the objectives. An initial self administered questionnaire survey was conducted among health managers to study their perceptions in relation to the regional health information system and its management support. The survey findings were used to establish the presence of health information system failure in the region and also as a precursor to the more in-depth case study which was followed. The sources of data for the case study were literature review, document analysis and key stake holder interviews. Health information system resources, health indicators, data sources, data management, data quality, and information dissemination were the six major components investigated. The study findings reveal that accurate, timely and reliable health information is unavailable and therefore evidence based health planning is lacking in the studied health region. Strengths and weaknesses of the current health information system were identified and strategic recommendations were formulated accordingly. It is anticipated that this research will make a significant and multi-fold contribution for health information management in developing countries. First, it will attempt to bridge an existing knowledge gap by presenting the findings of a comprehensive case study to reveal the strengths and weaknesses of a decentralised health information system in a developing country. Second, it will enrich the literature by providing an assessment tool and a research method for the evaluation of regional health information systems. Third, it will make a rewarding practical contribution by presenting valuable guidelines for improving health information systems in regional Sri Lanka.
Resumo:
The ability to perform autonomous emergency (forced) landings is one of the key technology enablers identified for UAS. This paper presents the flight test results of forced landings involving a UAS, in a controlled environment, and which was conducted to ascertain the performances of previously developed (and published) path planning and guidance algorithms. These novel 3-D nonlinear algorithms have been designed to control the vehicle in both the lateral and longitudinal planes of motion. These algorithms have hitherto been verified in simulation. A modified Boomerang 60 RC aircraft is used as the flight test platform, with associated onboard and ground support equipment sourced Off-the-Shelf or developed in-house at the Australian Research Centre for Aerospace Automation(ARCAA). HITL simulations were conducted prior to the flight tests and displayed good landing performance, however, due to certain identified interfacing errors, the flight results differed from that obtained in simulation. This paper details the lessons learnt and presents a plausible solution for the way forward.
Resumo:
This paper presents the flight trials of an electro-optical (EO) sense-and-avoid system onboard a Cessna host aircraft (camera aircraft). We focus on the autonomous collision avoidance capability of the sense-and-avoid system; that is, closed-loop integration with the onboard aircraft autopilot. We also discuss the system’s approach to target detection and avoidance control, as well as the methodology of the flight trials. The results demonstrate the ability of the sense-and-avoid system to automatically detect potential conflicting aircraft and engage the host Cessna autopilot to perform an avoidance manoeuvre, all without any human intervention
Resumo:
In the last few decades, the focus on building healthy communities has grown significantly (Ashton, 2009). There is growing evidence that new approaches to planning are required to address the challenges faced by contemporary communities. These approaches need to be based on timely access to local information and collaborative planning processes (Murray, 2006; Scotch & Parmanto, 2006; Ashton, 2009; Kazda et al., 2009). However, there is little research to inform the methods that can support this type of responsive, local, collaborative and consultative health planning (Northridge et al., 2003). Some research justifies the use of decision support systems (DSS) as a tool to support planning for healthy communities. DSS have been found to increase collaboration between stakeholders and communities, improve the accuracy and quality of the decision-making process, and improve the availability of data and information for health decision-makers (Nobre et al., 1997; Cromley & McLafferty, 2002; Waring et al., 2005). Geographic information systems (GIS) have been suggested as an innovative method by which to implement DSS because they promote new ways of thinking about evidence and facilitate a broader understanding of communities. Furthermore, literature has indicated that online environments can have a positive impact on decision-making by enabling access to information by a broader audience (Kingston et al., 2001). However, only limited research has examined the implementation and impact of online DSS in the health planning field. Previous studies have emphasised the lack of effective information management systems and an absence of frameworks to guide the way in which information is used to promote informed decisions in health planning. It has become imperative to develop innovative approaches, frameworks and methods to support health planning. Thus, to address these identified gaps in the knowledge, this study aims to develop a conceptual planning framework for creating healthy communities and examine the impact of DSS in the Logan Beaudesert area. Specifically, the study aims to identify the key elements and domains of information that are needed to develop healthy communities, to develop a conceptual planning framework for creating healthy communities, to collaboratively develop and implement an online GIS-based Health DSS (i.e., HDSS), and to examine the impact of the HDSS on local decision-making processes. The study is based on a real-world case study of a community-based initiative that was established to improve public health outcomes and promote new ways of addressing chronic disease. The study involved the development of an online GIS-based health decision support system (HDSS), which was applied in the Logan Beaudesert region of Queensland, Australia. A planning framework was developed to account for the way in which information could be organised to contribute to a healthy community. The decision support system was developed within a unique settings-based initiative Logan Beaudesert Health Coalition (LBHC) designed to plan and improve the health capacity of Logan Beaudesert area in Queensland, Australia. This setting provided a suitable platform to apply a participatory research design to the development and implementation of the HDSS. Therefore, the HDSS was a pilot study examined the impact of this collaborative process, and the subsequent implementation of the HDSS on the way decision-making was perceived across the LBHC. As for the method, based on a systematic literature review, a comprehensive planning framework for creating healthy communities has been developed. This was followed by using a mixed method design, data were collected through both qualitative and quantitative methods. Specifically, data were collected by adopting a participatory action research (PAR) approach (i.e., PAR intervention) that informed the development and conceptualisation of the HDSS. A pre- and post-design was then used to determine the impact of the HDSS on decision-making. The findings of this study revealed a meaningful framework for organising information to guide planning for healthy communities. This conceptual framework provided a comprehensive system within which to organise existing data. The PAR process was useful in engaging stakeholders and decision-making in the development and implementation of the online GIS-based DSS. Through three PAR cycles, this study resulted in heightened awareness of online GIS-based DSS and openness to its implementation. It resulted in the development of a tailored system (i.e., HDSS) that addressed the local information and planning needs of the LBHC. In addition, the implementation of the DSS resulted in improved decision- making and greater satisfaction with decisions within the LBHC. For example, the study illustrated the culture in which decisions were made before and after the PAR intervention and what improvements have been observed after the application of the HDSS. In general, the findings indicated that decision-making processes are not merely informed (consequent of using the HDSS tool), but they also enhance the overall sense of ‗collaboration‘ in the health planning practice. For example, it was found that PAR intervention had a positive impact on the way decisions were made. The study revealed important features of the HDSS development and implementation process that will contribute to future research. Thus, the overall findings suggest that the HDSS is an effective tool, which would play an important role in the future for significantly improving the health planning practice.