730 resultados para IEEE
Resumo:
Small element spacing in compact arrays results in strong mutual coupling between array elements. Performance degradation associated with the strong coupling can be avoided through the introduction of a decoupling network consisting of interconnected reactive elements. We present a systematic design procedure for decoupling networks of symmetrical arrays with more than three elements and characterized by circulant scattering parameter matrices. The elements of the decoupling network are obtained through repeated decoupling of the characteristic eigenmodes of the array, which allows the calculation of element values using closed-form expressions.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL’s pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.
Resumo:
Coral reefs are biologically complex ecosystems that support a wide variety of marine organisms. These are fragile communities under enormous threat from natural and human-based influences. Properly assessing and measuring the growth and health of reefs is essential to understanding impacts of ocean acidification, coastal urbanisation and global warming. In this paper, we present an innovative 3-D reconstruction technique based on visual imagery as a non-intrusive, repeatable, in situ method for estimating physical parameters, such as surface area and volume for efficient assessment of long-term variability. The reconstruction algorithms are presented, and benchmarked using an existing data set. We validate the technique underwater, utilising a commercial-off-the-shelf camera and a piece of staghorn coral, Acropora cervicornis. The resulting reconstruction is compared with a laser scan of the coral piece for assessment and validation. The comparison shows that 77% of the pixels in the reconstruction are within 0.3 mm of the ground truth laser scan. Reconstruction results from an unknown video camera are also presented as a segue to future applications of this research.
Resumo:
To detect and annotate the key events of live sports videos, we need to tackle the semantic gaps of audio-visual information. Previous work has successfully extracted semantic from the time-stamped web match reports, which are synchronized with the video contents. However, web and social media articles with no time-stamps have not been fully leveraged, despite they are increasingly used to complement the coverage of major sporting tournaments. This paper aims to address this limitation using a novel multimodal summarization framework that is based on sentiment analysis and players' popularity. It uses audiovisual contents, web articles, blogs, and commentators' speech to automatically annotate and visualize the key events and key players in a sports tournament coverage. The experimental results demonstrate that the automatically generated video summaries are aligned with the events identified from the official website match reports.
Resumo:
The interoperable and loosely-coupled web services architecture, while beneficial, can be resource-intensive, and is thus susceptible to denial of service (DoS) attacks in which an attacker can use a relatively insignificant amount of resources to exhaust the computational resources of a web service. We investigate the effectiveness of defending web services from DoS attacks using client puzzles, a cryptographic countermeasure which provides a form of gradual authentication by requiring the client to solve some computationally difficult problems before access is granted. In particular, we describe a mechanism for integrating a hash-based puzzle into existing web services frameworks and analyze the effectiveness of the countermeasure using a variety of scenarios on a network testbed. Client puzzles are an effective defence against flooding attacks. They can also mitigate certain types of semantic-based attacks, although they may not be the optimal solution.
Resumo:
With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed generators (DGs) to a distribution network or a microgrid can create several protection issues. The protection of these networks using protective devices based only on current is a challenging task due to the change in fault current levels and fault current direction. The isolation of a faulted segment from such networks will be difficult if converter interfaced DGs are connected as these DGs limit their output currents during the fault. Furthermore, if DG sources are intermittent, the current sensing protective relays are difficult to set since fault current changes with time depending on the availability of DG sources. The system restoration after a fault occurs is also a challenging protection issue in a converter interfaced DG connected distribution network or a microgrid. Usually, all the DGs will be disconnected immediately after a fault in the network. The safety of personnel and equipment of the distribution network, reclosing with DGs and arc extinction are the major reasons for these DG disconnections. In this thesis, an inverse time admittance (ITA) relay is proposed to protect a distribution network or a microgrid which has several converter interfaced DG connections. The ITA relay is capable of detecting faults and isolating a faulted segment from the network, allowing unfaulted segments to operate either in grid connected or islanded mode operations. The relay does not make the tripping decision based on only the fault current. It also uses the voltage at the relay location. Therefore, the ITA relay can be used effectively in a DG connected network in which fault current level is low or fault current level changes with time. Different case studies are considered to evaluate the performance of the ITA relays in comparison to some of the existing protection schemes. The relay performance is evaluated in different types of distribution networks: radial, the IEEE 34 node test feeder and a mesh network. The results are validated through PSCAD simulations and MATLAB calculations. Several experimental tests are carried out to validate the numerical results in a laboratory test feeder by implementing the ITA relay in LabVIEW. Furthermore, a novel control strategy based on fold back current control is proposed for a converter interfaced DG to overcome the problems associated with the system restoration. The control strategy enables the self extinction of arc if the fault is a temporary arc fault. This also helps in self system restoration if DG capacity is sufficient to supply the load. The coordination with reclosers without disconnecting the DGs from the network is discussed. This results in increased reliability in the network by reduction of customer outages.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
A microgrid may be supplied from inertial (rotating type) and non-inertial (converter-interfaced) distributed generators (DGs). However the dynamic response of these two types of DGs is different. Inertial DGs have a slower response due to their governor characteristics while non inertial DGs have the ability to respond very quickly. The focus of this paper is to propose better controls using droop characteristics to improve the dynamic interaction between different DG types in an autonomous microgrid. The transient behavior of DGs in the microgrid is investigated during the DG synchronization and load changes. Power sharing strategies based on frequency and voltage droop are considered for DGs. Droop control strategies are proposed for DGs to improve the smooth synchronization and dynamic power sharing minimizing transient oscillations in the microgrid. Simulation studies are carried out on PSCAD for validation.
Resumo:
This paper proposes a comprehensive approach to the planning of distribution networks and the control of microgrids. Firstly, a Modified Discrete Particle Swarm Optimization (MDPSO) method is used to optimally plan a distribution system upgrade over a 20 year planning period. The optimization is conducted at different load levels according to the anticipated load duration curve and integrated over the system lifetime in order to minimize its total lifetime cost. Since the optimal solution contains Distributed Generators (DGs) to maximize reliability, the DG must be able to operate in islanded mode and this leads to the concept of microgrids. Thus the second part of the paper reviews some of the challenges of microgrid control in the presence of both inertial (rotating direct connected) and non-inertial (converter interfaced) DGs. More specifically enhanced control strategies based on frequency droop are proposed for DGs to improve the smooth synchronization and real power sharing minimizing transient oscillations in the microgrid. Simulation studies are presented to show the effectiveness of the control.