108 resultados para ventilation radiator
Resumo:
Since 1996, ther provision of a refuge floor has been a mandatory feature for all new tall buildings in Hong Kong. These floors are designed to provide for building occupants a fire safe environment that is also free from smoke. However, the desired cross ventilation on these floors to achieve the removal of smoke, assumed by the Building Codes of Hong Kong, is still being questioned so that a further scientific study of the wind-induced ventilation of a refuge fllor is needed. This paper presents an investigation into this issue. The developed computational technique used in this paper was adopted to study the wind-induced natural ventilation on a refuge floor. The aim of the investigation was to establish whether a refuge floor with a cetnral core and having cross ventilation produced by only two open opposite external side walls on the refuge floor would provide the required protection in all situations taking into account behaviour of wind due to different floor heights, wall boundary conditions and turbulence intensity profiles. The results revealed that natural ventilation can be increased by increasng the floor heigh provided the wind angle to the building is less than 90 degrees. The effectiveness of the solution was greatly reduced when the wind was blowing at 90 degrees to the refuge floor opening.
Resumo:
Climate change mitigation is driving demand for energy-efficient and environmentally conscious commercial buildings in Australia. In the Australian subtropics, high rainfall, warm weather and humidity present unique challenges and opportunities for the architects tasked with designing eco-sensitive projects. The case of the James Street Market in Brisbane’s Fortitude Valley shows that climate-responsive design is an effective approach for reducing the environmental impact of commercial developments. The James Street Market combines climate-responsiveness, environmentally sensitive design strategies and smart planning to create a more sustainable retail precinct. This paper details the design strategies featured in the James Street Market, the project that kicked off a renaissance in climate-responsive commercial building design in Brisbane.
Resumo:
Dust emissions from large-scale, tunnel-ventilated poultry sheds could have negative health and environmental impacts. Despite this fact, the literature concerning dust emissions from tunnel-ventilated poultry sheds in Australia and overseas is relatively scarce. Dust measurements were conducted during two consecutive production cycles at a single broiler shed on a poultry farm near Ipswich, Queensland. Fresh litter was employed during the first cycle and partially reused litter was employed during the second cycle. This provided an opportunity to study the effect that partial litter reuse has on dust emissions. Dust levels were characterised by the number concentration of suspended particles having diameter between 0.5–20 μm and by the mass concentration of dust particles below 10 μm diameter (PM10) and 2.5 μm diameter (PM2.5). In addition, we measured the number size distributions of dust particles. The average concentration and emission rate of dust was higher when partially reused litter was used in the shed than when fresh litter was used. In addition we found that dust particles emitted from the shed with partially reused litter were finer than the particles emitted with fresh litter. Although the change in litter properties is certainly contributing to this observed variability, other factors such as ventilation rate and litter moisture content are also likely to be involved.
Resumo:
The aim of this work was to quantify exposure to particles emitted by wood-fired ovens in pizzerias. Overall, 15 microenvironments were chosen and analyzed in a 14-month experimental campaign. Particle number concentration and distribution were measured simultaneously using a Condensation Particle Counter (CPC), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS). The surface area and mass distributions and concentrations, as well as the estimation of lung deposition surface area and PM1 were evaluated using the SMPS-APS system with dosimetric models, by taking into account the presence of aggregates on the basis of the Idealized Aggregate (IA) theory. The fraction of inhaled particles deposited in the respiratory system and different fractions of particulate matter were also measured by means of a Nanoparticle Surface Area Monitor (NSAM) and a photometer (DustTrak DRX), respectively. In this way, supplementary data were obtained during the monitoring of trends inside the pizzerias. We found that surface area and PM1 particle concentrations in pizzerias can be very high, especially when compared to other critical microenvironments, such as the transport hubs. During pizza cooking under normal ventilation conditions, concentrations were found up to 74, 70 and 23 times higher than background levels for number, surface area and PM1, respectively. A key parameter is the oven shape factor, defined as the ratio between the size of the face opening in respect
Resumo:
The public transport corridor bordering the study site runs NW to SE and is perceived as a source of noise and pollution. The key urban planning strategies adopted by this team were: • Acoustic separation from transport corridor noise source, • A regular grid pattern of urban blocks, and • A clear hierarchy of accessible open space throughout the development.
Resumo:
On the case study site, using these strategies, the site density achieved was approximately 180 dwellings per hectare. According to ASK consulting engineers‟ acoustic report (in Ecolateral‟s report) the design gives solid consideration to the environmental noise issues associated with the site. The subject structure not only provides significant shielding of transport corridor noise to the suburb, it also minimises the potential for adverse impact on residential amenity within the building itself...
Resumo:
Nightclubs are businesses. Their business is pleasure; however pleasure has its price. People have become increasingly concerned about the problems of violence in society but why do higher levels of violence occur in nightclubs despite the established patterns of behaviour that dictates how we socialise and act? In response, researchers have focused on identifying social and situational factors that may contribute to violence from a government perspective, focusing on a variety of specific issues ranging from financial standpoints with effective target marketing strategies to legal obligations of supplying alcohol and abiding regulatory conditions. There is little research into specific design properties that can determine design standards to ensure/improve the physical design of nightclub environments to reduce patron violence. To address this gap, this current article aims to understand how people experience and respond to the physical environment of nightclubs and how these spaces influence their behaviour. The first section of this paper examines the background on nightclubs and theories concerning the influence of pleasure. The second section of this paper details the findings of existing studies that have examined the nightlife context and the various factors that influence patron violence. The main finding of this paper is that although alcohol likely plays a contributing role in aggressive patron behaviour, there is evidence that the relationship is moderated by a number of significant factors relating to the characteristics of the drinking environment such as: physical comfort; the degree of overall 'permissiveness‘ in the establishment; crowding; and physical environmental elements most influenced by day to-day management practices such as lighting, ventilation, cleanliness and seating arrangements. The findings from this paper have been used to develop a framework to guide exploratory research on how specific elements of the physical environment of nightclubs have an impact on elevated patron aggression and assault (Koleczko & Garcia Hansen, 2011).
Resumo:
While recent research has provided valuable information as to the composition of laser printer particles, their formation mechanisms, and explained why some printers are emitters whilst others are low emitters, fundamental questions relating to the potential exposure of office workers remained unanswered. In particular, (i) what impact does the operation of laser printers have on the background particle number concentration (PNC) of an office environment over the duration of a typical working day?; (ii) what is the airborne particle exposure to office workers in the vicinity of laser printers; (iii) what influence does the office ventilation have upon the transport and concentration of particles?; (iv) is there a need to control the generation of, and/or transport of particles arising from the operation of laser printers within an office environment?; (v) what instrumentation and methodology is relevant for characterising such particles within an office location? We present experimental evidence on printer temporal and spatial PNC during the operation of 107 laser printers within open plan offices of five buildings. We show for the first time that the eight-hour time-weighted average printer particle exposure is significantly less than the eight-hour time-weighted local background particle exposure, but that peak printer particle exposure can be greater than two orders of magnitude higher than local background particle exposure. The particle size range is predominantly ultrafine (< 100nm diameter). In addition we have established that office workers are constantly exposed to non-printer derived particle concentrations, with up to an order of magnitude difference in such exposure amongst offices, and propose that such exposure be controlled along with exposure to printer derived particles. We also propose, for the first time, that peak particle reference values be calculated for each office area analogous to the criteria used in Australia and elsewhere for evaluating exposure excursion above occupational hazardous chemical exposure standards. A universal peak particle reference value of 2.0 x 104 particles cm-3 has been proposed.
Resumo:
Sustainable housing implementation requires strong support from the public, government and the housing industry. Lack of public awareness and understanding of the language and the meaning of sustainable housing may cause lack of public support. Salama stated that "sustainability or sustainable design is simply a rephrasing of some of the forgotten values of traditional architecture and urbanism"(Salama 2007). This exploratory paper examines public awareness of sustainable housing in Saudi Arabia. In developing countries, like Saudi Arabia, which have been experiencing a rapid rate of urbanisation, sustainable concept intervention is essential due to the scarcity of resources (Reffat 2004a). Sustainable building methods include the full use of the site design, passive solar design, natural light and ventilation. This paper reports on an exploratory survey on understanding the potential of the implementation of sustainable housing in Saudi Arabia. The main problem is that more than half of respondents were not aware of sustainable housing. Thus, one of the recommendations from the survey is to educate the public by using local media to inform people of the benefits of sustainable implementation to both new and existing housing stock.
Resumo:
QUT's Centre for Subtropical Design (CSD) partnered with a major developer to bring together some of Brisbane’s most experienced and creative architects and designers in a two-day intensive design charrette to propose innovative design strategies for naturally-ventilated high rise residential buildings. An inner-urban renewal site in Queensland’s capital city Brisbane gave four multi-disciplinary teams the opportunity to address a raft of issues that developers and consultants will confront more and more in the future in warm humid climates. The quest to release apartment dwellers from dependence on energy-hungry air-conditioning and artificial lighting was central to the design brief for the towers. Mentored by Richard Hassell of WOHA, the creative teams focussed on climate-responsive design principles for passive climate control including orientation, cross-ventilation and outdoor living in order to reduce greenhouse gas emissions and offset occupants’ rising energy costs. This article discusses how outcomes of the charrette take their cue from the city’s subtropical climate and demonstrate how high-density high-rise living can be attractive, affordable and sustainable through positive engagement with the subtropical climate’s natural attributes.
Resumo:
This paper discusses the question of when pain and distress relief known to hasten death would cross the line between permissible conduct and killing. The issue is discussed in the context of organ donation after cardiac death, and considers the administration of analgesics, sedatives, and the controversial use of paralysing agents in the provision and withdrawal of ventilation.
Resumo:
The QUT Team developed an idea for a new residential housing typology that is appropriate for sites where the best views are in the opposing direction to the preferable climatic orientation. The interlocking configuration creates a double height external living space in every apartment, creating further opportunities for cross ventilation and natural daylight. Unlike conventional double loaded housing typologies, the interlocking configuration only requires a continuous public circulation corridor every second level. The cores that service this corridor are separated to either end of the tower and open areas. The configuration of the interlocking apartments creates an interesting composition of solid and void when viewed externally. This undulating facade petternation assists in articulating the large building mass. The project was evaluated by independent consultants and found to be cost effective, and at the same time delivering energy efficient high density liveability. The project was presented to a meeting of the Australian Council on Tall Buildings seminar on 15 September 2010.
Resumo:
Ultrafine particles (UFPs, <100 nm) are produced in large quantities by vehicular combustion and are implicated in causing several adverse human health effects. Recent work has suggested that a large proportion of daily UFP exposure may occur during commuting. However, the determinants, variability and transport mode-dependence of such exposure are not well-understood. The aim of this review was to address these knowledge gaps by distilling the results of ‘in-transit’ UFP exposure studies performed to-date, including studies of health effects. We identified 47 exposure studies performed across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. These encompassed approximately 3000 individual trips where UFP concentrations were measured. After weighting mean UFP concentrations by the number of trips in which they were collected, we found overall mean UFP concentrations of 3.4, 4.2, 4.5, 4.7, 4.9 and 5.7 × 10^4 particles cm^-3 for the bicycle, bus, automobile, rail, walking and ferry modes, respectively. The mean concentration inside automobiles travelling through tunnels was 3.0 × 10^5 particles cm^-3. While the mean concentrations were indicative of general trends, we found that the determinants of exposure (meteorology, traffic parameters, route, fuel type, exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP penetration) exhibited marked variability and mode-dependence, such that it is not necessarily appropriate to rank modes in order of exposure without detailed consideration of these factors. Ten in-transit health effects studies have been conducted and their results indicate that UFP exposure during commuting can elicit acute effects in both healthy and health-compromised individuals. We suggest that future work should focus on further defining the contribution of in-transit UFP exposure to total UFP exposure, exploring its specific health effects and investigating exposures in the developing world. Keywords: air pollution; transport modes; acute health effects; travel; public transport
Resumo:
Commuting in various transport modes represents an activity likely to incur significant exposure to traffic emissions. This study investigated the determinants and characteristics of exposure to ultrafine (< 100 nm) particles (UFPs) in four transport modes in Sydney, with a specific focus on exposure in automobiles, which remain the transport mode of choice for approximately 70% of Sydney commuters. UFP concentrations were measured using a portable condensation particle counter (CPC) inside five automobiles commuting on above ground and tunnel roadways, and in buses, ferries and trains. Determinant factors investigated included wind speed, cabin ventilation (automobiles only) and traffic volume. The results showed that concentrations varied significantly as a consequence of transport mode, vehicle type and ventilation characteristics. The effects of wind speed were minimal relative to those of traffic volume (especially heavy diesel vehicles) and cabin ventilation, with the latter proving to be a strong determinant of UFP ingress into automobiles. The effect of ~70 minutes of commuting on total daily exposure was estimated using a range of UFP concentrations reported for several microenvironments. A hypothetical Sydney resident commuting by automobile and spending 8.5 minutes of their day in the M5 East tunnel could incur anywhere from a lower limit of 3-11% to an upper limit of 37-69% of daily UFP exposure during a return commute, depending on the concentrations they encountered in other microenvironments, the type of vehicle they used and the ventilation setting selected. However, commute-time exposures at either extreme of the values presented are unlikely to occur in practice. The range of exposures estimated for other transport modes were comparable to those of automobiles, and in the case of buses, higher than automobiles.