115 resultados para vadose zone thickness
Resumo:
The time course of elongation and recovery of axial length associated with a 30 minute accommodative task was studied using optical low coherence reflectometry in a population of young adult myopic (n = 37) and emmetropic (n = 22) subjects. Ten of the 59 subjects were excluded from analysis either due to inconsistent accommodative response, or incomplete anterior biometry data. Those subjects with valid data (n = 49) were found to exhibit a significant axial elongation immediately following the commencement of a 30 minute, 4 D accommodation task, which was sustained for the duration of the task, and ¬was evident to a lesser extent immediately following task cessation. During the accommodation task, on average, the myopic subjects exhibited 22 ± 34 µm, and the emmetropic subjects 6 ± 22 µm of axial elongation, however the differences in axial elongation between the myopic and emmetropic subjects were not statistically significant (p = 0.136). Immediately following the completion of the task, the myopic subjects still exhibited an axial elongation (mean magnitude 12 ± 28 µm), that was significantly greater (p < 0.05) than the changes in axial length observed in the emmetropic subjects (mean change -3 ± 16 µm). Axial length had returned to baseline levels 10 minutes after completion of the accommodation task. The time for recovery from accommodation-induced axial elongation was greater in myopes, which may reflect differences in the biomechanical properties of the globe associated with refractive error. Changes in subfoveal choroidal thickness were able to be measured in 37 of the 59 subjects, and a small amount of choroidal thinning was observed during the accommodation task that was statistically significant in the myopic subjects (p < 0.05). These subfoveal choroidal changes could account for some but not all of the increased axial length during accommodation.
Resumo:
Recent research indicates that brief periods (60 minutes) of monocular defocus lead to small but significant changes in human axial length. However, the effects of longer periods of defocus on the axial length of human eyes are unknown. We examined the influence of a 12 hour period of monocular myopic defocus on the natural daily variations occurring in axial length and choroidal thickness of young adult emmetropes. A series of axial length and choroidal thickness measurements (collected at ~3 hourly intervals, with the first measurement at ~9 am and the final measurement at ~9 pm) were obtained for 13 emmetropic young adults over three consecutive days. The natural daily rhythms (Day 1, baseline day, no defocus), the daily rhythms with monocular myopic defocus (Day 2, defocus day, +1.50 DS spectacle lens over the right eye), and the recovery from any defocus induced changes (Day 3, recovery day, no defocus) were all examined. Significant variations over the course of the day were observed in both axial length and choroidal thickness on each of the three measurement days (p<0.0001). The magnitude and timing of the daily variations in axial length and choroidal thickness were significantly altered with the monocular myopic defocus on day 2 (p<0.0001). Following the introduction of monocular myopic defocus, the daily peak in axial length occurred approximately 6 hours later, and the peak in choroidal thickness approximately 8.5 hours earlier in the day compared to days 1 and 3 (with no defocus). The mean amplitude (peak to trough) of change in axial length (0.030 ± 0.012 on day 1, 0.020 ± 0.010 on day 2 and 0.033 ± 0.012 mm on day 3) and choroidal thickness (0.030 ± 0.007 on day 1, 0.022 ± 0.006 on day 2 and 0.027 ± 0.009 mm on day 3) were also significantly different between the three days (both p<0.05). The introduction of monocular myopic defocus disrupts the daily variations in axial length and choroidal thickness of human eyes (in terms of both amplitude and timing) that return to normal the following day after removal of the defocus.
Resumo:
The geometry of ductile strain localization phenomena is related to the rheology of the deformed rocks. Both qualitative and quantitative rheological properties of natural rocks have been estimated from finite field structures such as folds and shear zones. We apply physical modelling to investigate the relationship between rheology and the temporal evolution of the width and transversal strain distribution in shear zones, both of which have been used previously as rheological proxies. Geologically relevant materials with well-characterized rheological properties (Newtonian, strain hardening, strain softening, Mohr-Coulomb) are deformed in a shear box and observed with Particle Imaging Velocimetry (PIV). It is shown that the width and strain distribution histories in model shear zones display characteristic finite responses related to material properties as predicted by previous studies. Application of the results to natural shear zones in the field is discussed. An investigation of the impact of 3D boundary conditions in the experiments demonstrates that quantitative methods for estimating rheology from finite natural structures must take these into account carefully.
Resumo:
High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.
Resumo:
Purpose: To compare the retinal thickness (RT) and choroidal thickness (ChT) between the fellow eyes of non-amblyopic myopic anisometropes. Methods: The eyes of 22 non-amblyopic myopic anisometropes (1 D spherical equivalent refraction [SER] anisometropia) were examined using spectral domain optical coherence tomography (SD-OCT). Customised software was used to register, align and average multiple foveal OCT B-Scan images from each subject in order to enhance image quality. Two independent masked observers manually determined the RT and ChT from each SD-OCT image up to 2.5 mm nasal and temporal to the fovea. Axial length (AXL) was measured using optical low coherence biometry during relaxed accommodation. Results: The mean SER anisometropia was 1.74 ± 0.95 D and the mean interocular AXL difference was 0.58 ± 0.41 mm. There was no significant difference in foveal RT between the fellow eyes (P > 0.05). Mean subfoveal ChT was significantly thinner in the more myopic eye (252 ± 46 μm compared to the fellow, less myopic eye (286 ± 58 μm) (P < 0.001). There was a moderate correlation between the interocular difference in subfoveal ChT and the interocular difference in AXL (r = -0.50, P < 0.01). Asian anisometropes displayed more regionally symmetrical (nasal-temporal)interocular differences in ChT profile compared to Caucasians. Conclusions: RT was similar between the fellow eyes of myopic anisometropes; however, the subfoveal choroid was significantly thinner in the more myopic (longer) eye of this anisometropic cohort. The interocular asymmetry in ChT correlated with the interocular difference in AXL.
Resumo:
Hard biological materials such as bone possess superior material properties of high stiffness and toughness. Two unique characteristics of bone microstructure are a large aspect ratio of mineralized collagen fibrils (MCF), and an extremely thin and large area of extrafibrillar protein matrix located between the MCF. The objective of this study is to investigate the effects of: (1) MCF aspect ratio, and (2) energy dissipation in extrafibrillar protein matrix on the mechanical behaviour of MCF arrays. In this study, notched specimens of MCF arrays in extrafibrillar protein matrix are subjected to bending. Cohesive zone model was implemented to simulate the failure of extrafibrillar protein matrix. The study reveals that the MCF array with a higher MCF aspect ratio and the MCF array with a higher protein energy dissipation in the interface direction are able to sustain a higher bending force and dissipate higher energy.
Resumo:
This chapter contains sections titled: Introduction ICZM and sustainable development of coastal zone International legal framework for ICZM Implementation of international legal obligations in domestic arena Concluding remarks References
Resumo:
Proper functioning of Insulated Rail Joints (IRJs) is essential for the safe operation of the railway signalling systems and broken rail identification circuitries. The Conventional IRJ (CIRJ) resembles structural butt joints consisting of two pieces of rails connected together through two joint bars on either side of their web and the assembly is held together through pre-tensioned bolts. As the IRJs should maintain electrical insulation between the two rails, a gap between the rail ends must be retained at all times and all metal contacting surfaces should be electrically isolated from each other using non-conductive material. At the gap, the rail ends lose longitudinal continuity and hence the vertical sections of the rail ends are often severely damaged, especially at the railhead, due to the passage of wheels compared to other continuously welded rail sections. Fundamentally, the reason for the severe damage can be related to the singularities of the wheel-rail contact pressure and the railhead stress. No new generation designs that have emerged in the market to date have focussed on this fundamental; they only have provided attention to either the higher strength materials or the thickness of the sections of various components of the IRJs. In this thesis a novel method of shape optimisation of the railhead is developed to eliminate the pressure and stress singularities through changes to the original sharp corner shaped railhead into an arc profile in the longitudinal direction. The optimal shape of the longitudinal railhead profile has been determined using three nongradient methods in search of accuracy and efficiency: (1) Grid Search Method; (2) Genetic Algorithm Method and (3) Hybrid Genetic Algorithm Method. All these methods have been coupled with a parametric finite element formulation for the evaluation of the objective function for each iteration or generation depending on the search algorithm employed. The optimal shape derived from these optimisation methods is termed as Stress Minimised Railhead (SMRH) in this thesis. This optimal SMRH design has exhibited significantly reduced stress concentration that remains well below the yield strength of the head hardened rail steels and has shifted the stress concentration location away from the critical zone of the railhead end. The reduction in the magnitude and the relocation of the stress concentration in the SMRH design has been validated through a full scale wheel – railhead interaction test rig; Railhead strains under the loaded wheels have been recorded using a non-contact digital image correlation method. Experimental study has confirmed the accuracy of the numerical predications. Although the SMRH shaped IRJs eliminate stress singularities, they can still fail due to joint bar or bolt hole cracking; therefore, another conceptual design, termed as Embedded IRJ (EIRJ) in this thesis, with no joint bars and pre-tensioned bolts has been developed using a multi-objective optimisation formulation based on the coupled genetic algorithm – parametric finite element method. To achieve the required structural stiffness for the safe passage of the loaded wheels, the rails were embedded into the concrete of the post tensioned sleepers; the optimal solutions for the design of the EIRJ is shown to simplify the design through the elimination of the complex interactions and failure modes of the various structural components of the CIRJ. The practical applicability of the optimal shapes SMRH and EIRJ is demonstrated through two illustrative examples, termed as improved designs (IMD1 & IMD2) in this thesis; IMD1 is a combination of the CIRJ and the SMRH designs, whilst IMD2 is a combination of the EIRJ and SMRH designs. These two improved designs have been simulated for two key operating (speed and wagon load) and design (wheel diameter) parameters that affect the wheel-rail contact; the effect of these parameters has been found to be negligible to the performance of the two improved designs and the improved designs are in turn found far superior to the current designs of the CIRJs in terms of stress singularities and deformation under the passage of the loaded wheels. Therefore, these improved designs are expected to provide longer service life in relation to the CIRJs.
Resumo:
The use of immobilised TiO2 for the purification of polluted water streams introduces the necessity to evaluate the effect of mechanisms such as the transport of pollutants from the bulk of the liquid to the catalyst surface and the transport phenomena inside the porous film. Experimental results of the effects of film thickness on the observed reaction rate for both liquid-side and support-side illumination are here compared with the predictions of a one-dimensional mathematical model of the porous photocatalytic slab. Good agreement was observed between the experimentally obtained photodegradation of phenol and its by-products, and the corresponding model predictions. The results have confirmed that an optimal catalyst thickness exists and, for the films employed here, is 5 μm. Furthermore, the modelling results have highlighted the fact that porosity, together with the intrinsic reaction kinetics are the parameters controlling the photocatalytic activity of the film. The former by influencing transport phenomena and light absorption characteristics, the latter by naturally dictating the rate of reaction.
Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage
Resumo:
The determination of the characteristics of articular cartilage such as thickness, stiffness and swelling, especially in the form that can facilitate real-time decisions and diagnostics is still a matter for research and development. This paper correlates near infrared spectroscopy with mechanically measured cartilage thickness to establish a fast, non-destructive, repeatable and precise protocol for determining this tissue property. Statistical correlation was conducted between the thickness of bovine cartilage specimens (n = 97) and regions of their near infrared spectra. Nine regions were established along the full absorption spectrum of each sample and were correlated with the thickness using partial least squares (PLS) regression multivariate analysis. The coefficient of determination (R2) varied between 53 and 93%, with the most predictive region (R2 = 93.1%, p < 0.0001) for cartilage thickness lying in the region (wavenumber) 5350–8850 cm−1. Our results demonstrate that the thickness of articular cartilage can be measured spectroscopically using NIR light. This protocol is potentially beneficial to clinical practice and surgical procedures in the treatment of joint disease such as osteoarthritis.
Resumo:
Purpose To examine choroidal thickness (ChT) and its spatial distribution across the posterior pole in pediatric subjects with normal ocular health and minimal refractive error. Methods ChT was assessed using spectral domain optical coherence tomography (OCT) in 194 children aged between 4-12 years, with spherical equivalent refractive errors between +1.25 and -0.50 DS. A series of OCT scans were collected, imaging the choroid along 4 radial scan lines centered on the fovea (each separated by 45°). Frame averaging was used to reduce noise and enhance chorio-scleral junction visibility. The transverse scale of each scan was corrected to account for magnification effects associated with axial length. Two independent masked observers manually segmented the OCT images to determine ChT at foveal centre, and averaged across a series of perifoveal zones over the central 5 mm. Results The average subfoveal ChT was 330 ± 65 µm (range 189-538 µm), and was significantly influenced by age (p=0.04). The ChT of the 4 to 6 year old age group (312 ± 62 µm) was significantly thinner compared to the 7 to 9 year olds (337 ± 65 µm, p<0.05) and bordered on significance compared to the 10 to 12 year olds (341 ± 61 µm, p=0.08). ChT also exhibited significant variation across the posterior pole, being thicker in more central regions. The choroid was thinner nasally and inferiorly compared to temporally and superiorly. Multiple regression analysis revealed age, axial length and anterior chamber depth were significantly associated with subfoveal ChT (p<0.001). Conclusions ChT increases significantly from early childhood to adolescence. This appears to be a normal feature of childhood eye growth.
Resumo:
We present an electrochemical exfoliation method to produce controlled thickness graphene flakes by ultrasound assistance. Bilayer graphene flakes are dominant in the final product by using sonication during the electrochemical exfoliation process, while without sonication the product contains a larger percentage of four-layer graphene flakes. Graphene sheets prepared by using the two procedures are processed into films to measure their respective sheet resistance and optical transmittance. Solid-state electrolyte supercapacitors are made using the two types of graphene films. Our study reveals that films with a higher content of multilayer graphene flakes are more conductive, and their resistance is more easily reduced by thermal annealing, making them suitable as transparent conducting films. The film with higher content of bilayer graphene flakes shows instead higher capacitance when used as electrode in a supercapacitor.