66 resultados para topological soliton
Resumo:
This paper introduces a minimalistic approach to produce a visual hybrid map of a mobile robot’s working environment. The proposed system uses omnidirectional images along with odometry information to build an initial dense posegraph map. Then a two level hybrid map is extracted from the dense graph. The hybrid map consists of global and local levels. The global level contains a sparse topological map extracted from the initial graph using a dual clustering approach. The local level contains a spherical view stored at each node of the global level. The spherical views provide both an appearance signature for the nodes, which the robot uses to localize itself in the environment, and heading information when the robot uses the map for visual navigation. In order to show the usefulness of the map, an experiment was conducted where the map was used for multiple visual navigation tasks inside an office workplace.
Resumo:
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment.
Resumo:
Realistic virtual models of leaf surfaces are important for a number of applications in the plant sciences, such as modelling agrichemical spray droplet movement and spreading on the surface. In this context, the virtual surfaces are required to be sufficiently smooth to facilitate the use of the mathematical equations that govern the motion of the droplet. While an effective approach is to apply discrete smoothing D2-spline algorithms to reconstruct the leaf surfaces from three-dimensional scanned data, difficulties arise when dealing with wheat leaves that tend to twist and bend. To overcome this topological difficulty, we develop a parameterisation technique that rotates and translates the original data, allowing the surface to be fitted using the discrete smoothing D2-spline methods in the new parameter space. Our algorithm uses finite element methods to represent the surface as a linear combination of compactly supported shape functions. Numerical results confirm that the parameterisation, along with the use of discrete smoothing D2-spline techniques, produces realistic virtual representations of wheat leaves.
Resumo:
In this paper, we demonstrate that the distribution of Wolfram classes within a cellular automata rule space in the triangular tessellation is not consistent across different topological general. Using a statistical mechanics approach, cellular automata dynamical classes were approximated for cellular automata defined on genus-0, genus-1 and genus-2 2-manifolds. A distribution-free equality test for empirical distributions was applied to identify cases in which Wolfram classes were distributed differently across topologies. This result implies that global structure and local dynamics contribute to the long term evolution of cellular automata.
Resumo:
This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
Photographic documentation of sculpture produces significant consequences for the way in which sculptural space is conceived. When viewed as discrete mediums the interaction of the photograph and its sculptural subject is always framed by notions of loss. However, when taken as a composite system, the sculpture-photograph proposes a new ontology of space. In place of the fixity of medium, we can observe a topology at play: a theory drawn from mathematics in which space is understood not as a static field but in terms of properties of connectedness, movement and differentiation. Refracted through the photographic medium, sculpture becomes not a field of fixed points in space, but rather as a fluid set of relations - a continuous sequence of multiple ‘surfaces’, a network of shifting views. This paper will develop a topological account of studio practice through an examination of the work of the contemporary Belgian sculptor Didier Vermeiren (b. 1951). Since the 1980s, Vermeiren has made extensive use of photography in his sculptural practice. By analysing a series of iterations of his work Cariatide à la Pierre (1997-1998), this paper proposes that Vermeiren’s use of photography reveals patterns of connection that expand and complicate the language of sculpture, while also emphasising the broader topology of the artist’s practice as a network of ‘backward glances’ to previous works from the artist’s oeuvre and the art-historical canon. In this context, photography is not simply a method of documentation, but rather a means of revealing the intrinsic condition of sculpture as medium shaped by dynamic patterns of connection and change. In Vermeiren’s work the sculpture-photograph, has a composite identity that exceeds straightforward categories of medium. In their place, we can observe a practice based upon the complex interactions of objects whose ontology is always underpinned by a certain contingency. It is in this fundamental mobility, that the topology of Vermeiren’s practice can be said to rest.
Resumo:
Brain connectivity analyses are increasingly popular for investigating organization. Many connectivity measures including path lengths are generally defined as the number of nodes traversed to connect a node in a graph to the others. Despite its name, path length is purely topological, and does not take into account the physical length of the connections. The distance of the trajectory may also be highly relevant, but is typically overlooked in connectivity analyses. Here we combined genotyping, anatomical MRI and HARDI to understand how our genes influence the cortical connections, using whole-brain tractography. We defined a new measure, based on Dijkstra's algorithm, to compute path lengths for tracts connecting pairs of cortical regions. We compiled these measures into matrices where elements represent the physical distance traveled along tracts. We then analyzed a large cohort of healthy twins and show that our path length measure is reliable, heritable, and influenced even in young adults by the Alzheimer's risk gene, CLU.
Resumo:
Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, highangular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.
Resumo:
This article uses topological approaches to suggest that education is becoming-topological. Analyses presented in a recent double-issue of Theory, Culture & Society are used to demonstrate the utility of topology for education. In particular, the article explains education's topological character through examining the global convergence of education policy, testing and the discursive ranking of systems, schools and individuals in the promise of reforming education through the proliferation of regimes of testing at local and global levels that constitute a new form of governance through data. In this conceptualisation of global education policy changes in the form and nature of testing combine with it the emergence of global policy network to change the nature of the local (national, regional, school and classroom) forces that operate through the ‘system’. While these forces change, they work through a discursivity that produces disciplinary effects, but in a different way. This new–old disciplinarity, or ‘database effect’, is here represented through a topological approach because of its utility for conceiving education in an increasingly networked world.
Resumo:
To date, a number of two-dimensional (2D) topological insulators (TIs) have been realized in Group 14 elemental honeycomb lattices, but all are inversionsymmetric. Here, based on first-principles calculations, we predict a new family of 2D inversion-asymmetric TIs with sizeable bulk gaps from 105 meV to 284 meV, in X2–GeSn (X = H, F, Cl, Br, I) monolayers, making them in principle suitable for room-temperature applications. The nontrivial topological characteristics of inverted band orders are identified in pristine X2–GeSn with X = (F, Cl, Br, I), whereas H2–GeSn undergoes a nontrivial band inversion at 8% lattice expansion. Topologically protected edge states are identified in X2–GeSn with X = (F, Cl, Br, I), as well as in strained H2–GeSn. More importantly, the edges of these systems, which exhibit single-Dirac-cone characteristics located exactly in the middle of their bulk band gaps, are ideal for dissipationless transport. Thus, Group 14 elemental honeycomb lattices provide a fascinating playground for the manipulation of quantum states.
Resumo:
PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.
Resumo:
Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.
Resumo:
Stability analyses have been widely used to better understand the mechanism of traffic jam formation. In this paper, we consider the impact of cooperative systems (a.k.a. connected vehicles) on traffic dynamics and, more precisely, on flow stability. Cooperative systems are emerging technologies enabling communication between vehicles and/or with the infrastructure. In a distributed communication framework, equipped vehicles are able to send and receive information to/from other equipped vehicles. Here, the effects of cooperative traffic are modeled through a general bilateral multianticipative car-following law that improves cooperative drivers' perception of their surrounding traffic conditions within a given communication range. Linear stability analyses are performed for a broad class of car-following models. They point out different stability conditions in both multianticipative and nonmultianticipative situations. To better understand what happens in unstable conditions, information on the shock wave structure is studied in the weakly nonlinear regime by the mean of the reductive perturbation method. The shock wave equation is obtained for generic car-following models by deriving the Korteweg de Vries equations. We then derive traffic-state-dependent conditions for the sign of the solitary wave (soliton) amplitude. This analytical result is verified through simulations. Simulation results confirm the validity of the speed estimate. The variation of the soliton amplitude as a function of the communication range is provided. The performed linear and weakly nonlinear analyses help justify the potential benefits of vehicle-integrated communication systems and provide new insights supporting the future implementation of cooperative systems.
Resumo:
In this paper, we introduce a path algebra well suited for navigation in environments that can be abstracted as topological graphs. From this path algebra, we derive algorithms to reduce routes in such environments. The routes are reduced in the sense that they are shorter (contain fewer edges), but still connect the endpoints of the initial routes. Contrary to planning methods descended from Disjktra’s Shortest Path Algorithm like D , the navigation methods derived from our path algebra do not require any graph representation. We prove that the reduced routes are optimal when the graphs are without cycles. In the case of graphs with cycles, we prove that whatever the length of the initial route, the length of the reduced route is bounded by a constant that only depends on the structure of the environment.