633 resultados para technology adoption
Resumo:
The adoption of e-business by the Australian construction industry lags other service and product industries. It is assumed that slow adoption rate does not reflect the maturity of the technology but is due to adoption impediments peculiar to the nature of construction. This chapter examines impediments to the uptake of e-business nationally and internationally. A systematic and extensive literature search of impediments (also referred to as obstacles, impediments or hindrances) to adoption has been undertaken and the findings discussed in this chapter. This review included more that 200 documents and these have been published in a searchable database as part of a larger research initiative funded by the Cooperative Research Centre for Construction Innovation. The influence of levels of e-business maturity seen in other sectors such as retail, tourism and manufacturing was also captured and a number of major impediments were identified some including: privacy, trust, uncertainty of financial returns, lack of reliable measurement, fraud, lack of support and system maintenance. A total of 23 impediments were assessed in terms of impact to organisational type and size across reviewed documents. With this information it was possible to develop a reference framework for measuring maturity levels and readiness to uptake e-business in construction. Results have also shown that impediments to e-business adoption work differently according to organisational type and culture. Areas of training and people development need to be addressed. This would include a more sensitive approach to the nature of construction organisations, especially to those small and medium enterprises. Raising levels of awareness and creating trust for on-line collaboration are other aspects that need attention, which current studies confirm as lacking. An empirical study within construction, to validate these findings, forms the subsequent phase of this research.
Resumo:
Principal Topic High technology consumer products such as notebooks, digital cameras and DVD players are not introduced into a vacuum. Consumer experience with related earlier generation technologies, such as PCs, film cameras and VCRs, and the installed base of these products strongly impacts the market diffusion of the new generation products. Yet technology substitution has received only sparse attention in the diffusion of innovation literature. Research for consumer durables has been dominated by studies of (first purchase) adoption (c.f. Bass 1969) which do not explicitly consider the presence of an existing product/technology. More recently, considerable attention has also been given to replacement purchases (c.f. Kamakura and Balasubramanian 1987). Only a handful of papers explicitly deal with the diffusion of technology/product substitutes (e.g. Norton and Bass, 1987: Bass and Bass, 2004). They propose diffusion-type aggregate-level sales models that are used to forecast the overall sales for successive generations. Lacking household data, these aggregate models are unable to give insights into the decisions by individual households - whether to adopt generation II, and if so, when and why. This paper makes two contributions. It is the first large-scale empirical study that collects household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in comparision to traditional analysis that evaluates technology substitution as an ''adoption of innovation'' type process, we propose that from a consumer's perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing the generation I product with generation II). Based on this proposition, we develop and test a number of hypotheses. Methodology/Key Propositions In some cases, successive generations are clear ''substitutes'' for the earlier generation, in that they have almost identical functionality. For example, successive generations of PCs Pentium I to II to III or flat screen TV substituting for colour TV. More commonly, however, the new technology (generation II) is a ''partial substitute'' for existing technology (generation I). For example, digital cameras substitute for film-based cameras in the sense that they perform the same core function of taking photographs. They have some additional attributes of easier copying and sharing of images. However, the attribute of image quality is inferior. In cases of partial substitution, some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Extensive research on innovation adoption has consistently shown consumer innovativeness is the most important consumer characteristic that drives adoption timing (Goldsmith et al. 1995; Gielens and Steenkamp 2007). Hence, we expect consumer innovativeness also to influence both additional and substitute generation II purchases. Hypothesis 1a) More innovative households will make additional generation II purchases earlier. 1 b) More innovative households will make substitute generation II purchases earlier. 1 c) Consumer innovativeness will have a stronger impact on additional generation II purchases than on substitute generation II purchases. As outlined above, substitute generation II purchases act, in part like a replacement purchase for the generation I product. Prior research (Bayus 1991; Grewal et al 2004) identified product age as the most dominant factor influencing replacements. Hence, we hypothesise that: Hypothesis 2: Households with older generation I products will make substitute generation II purchases earlier. Our survey of 8,077 households investigates their adoption of two new generation products: notebooks as a technology change to PCs, and DVD players as a technology shift from VCRs. We employ Cox hazard modelling to study factors influencing the timing of a household's adoption of generation II products. We determine whether this is an additional or substitute purchase by asking whether the generation I product is still used. A separate hazard model is conducted for additional and substitute purchases. Consumer Innovativeness is measured as domain innovativeness adapted from the scales of Goldsmith and Hofacker (1991) and Flynn et al. (1996). The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include age, size and income of household, and age and education of primary decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases (exp = 1.11) and substitute purchases (exp = 1.09). Exp is interpreted as the increased probability of purchase for an increase of 1.0 on a 7-point innovativeness scale. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD (exp = 2.92) and a strong influence for PCs/notebooks (exp = 1.30). Exp is interpreted as the increased probability of purchase for an increase of 10 years in the age of the generation I product. Yet, also as hypothesised, there was no influence on additional purchases. The results lead to two key implications. First, there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. Treating these as a single process will mask the true drivers of adoption. For substitute purchases, product age is a key driver. Hence, implications for marketers of high technology products can utilise data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
The adoption of e-business by the Australian construction industry lags other service and product industries. It is assumed that slow adoption rate does not reflect the maturity of the technology but is due to adoption barriers peculiar to the nature of construction. This paper examines impediments to the uptake of e-business nationally and internationally. A systematic and extensive literature search of barriers (also referred to as obstacles, impediments or hindrances) to adoption has been undertaken and the findings discussed in this paper. This review included more that 200 documents and these have been published in a searchable database as part of a larger research initiative funded by the Cooperative Research Centre for Construction Innovation. The influence of levels of e-business maturity seen in other sectors such as retail, tourism and manufacturing was also captured and a number of major barriers were identified some including: privacy, trust, uncertainty of financial returns, lack of reliable measurement, fraud, lack of support and system maintenance. A total of 23 barriers were assessed in terms of impact to organisational type and size across reviewed documents. With this information it was possible to develop a reference framework for measuring maturity levels and readiness to uptake e-business in construction. Results have also shown that barriers to e-business adoption work differently according to organisational type and culture. Areas of training and people development need to be addressed. This would include a more sensitive approach to the nature of construction organisations, especially to those small and medium enterprises. Raising levels of awareness and creating trust for on-line collaboration are other aspects that need attention, which current studies confirm as lacking. An empirical study within construction, to validate these findings, forms the subsequent phase of this research.
Resumo:
We develop and test a theoretically-based integrative model of organizational innovation adoption. Confirmatory factor analyses using responses from 134 organizations showed that the hypothesized second-order model was a better fit to the data than the traditional model of independent factors. Furthermore, although not all elements were significant, the hypothesized model fit adoption better than the traditional model.
Resumo:
Tertiary education is increasingly a contested space where advances in Information Communications Technologies and their application to technology-mediated e-learning environments have forced university administrators and educators to dislocate themselves from traditional correspondence modes of student engagement. Compounding this paradigmatic shift within the traditional sphere of distance education pedagogy are multiple and conflicting pressures on academics to develop flexible, engaging, cost-effective and sustainable interactive learning resources that incorporate both multimedia and hypermedia. This chapter reports on a study that examined factors that influence educators’ decision to adopt and integrate educational technology and convert traditional print-based distance education materials into interactive multimodal e-learning formats. Although the broader study was conducted in a single Australian university and investigated pedagogical, institutional and individual factors, this chapter restricts its focus to solely the pedagogical motivations and concerns of educators. It is argued that findings from the study have significance at the institutional level, particularly in terms of developing an underlying pedagogical rationale that can permeate the e-learning culture throughout the university, while at the same time, providing a roadmap for educators who are yet to fully engage with the e-learning format.
Resumo:
Building Information Modelling (BIM) is an IT enabled technology that allows storage, management, sharing, access, update and use of all the data relevant to a project through out the project life-cycle in the form of a data repository. BIM enables improved inter-disciplinary collaboration across distributed teams, intelligent documentation and information retrieval, greater consistency in building data, better conflict detection and enhanced facilities management. While the technology itself may not be new, and similar approaches have been in use in some other sectors like Aircraft and Automobile industry for well over a decade now, the AEC/FM (Architecture, Engineering and Construction/ Facilities Management) industry is still to catch up with them in its ability to exploit the benefits of the IT revolution. Though the potential benefits of the technology in terms of knowledge sharing, project management, project co-ordination and collaboration are near to obvious, the adoption rate has been rather lethargic, inspite of some well directed efforts and availability of supporting commercial tools. Since the technology itself has been well tested over the years in some other domains the plausible causes must be rooted well beyond the explanation of the ‘Bell Curve of innovation adoption’. This paper discusses the preliminary findings of an ongoing research project funded by the Cooperative Research Centre for Construction Innovation (CRC-CI) which aims to identify these gaps and come up with specifications and guidelines to enable greater adoption of the BIM approach in practice. A detailed literature review is conducted that looks at some of the similar research reported in the recent years. A desktop audit of some of the existing commercial tools that support BIM application has been conducted to identify the technological issues and concerns, and a workshop was organized with industry partners and various players in the AEC industry for needs analysis, expectations and feedback on the possible deterrents and inhibitions surrounding the BIM adoption.
Resumo:
Significant sums of money are invested in developing technological innovations that have low levels and rates of adoption. Several approaches have been put forward in an effort to improve rates of adoption. This paper presents the results of study that examined the innovation fit of key technological innovations in the beef industry. Findings indicate that be assessing the innovation fit throughout the R&D process researchers and end users can collaborate to improve the innovation fit and the rate of adoption. The paper also put forward a model that demonstrates the linkages between R&D, adoption and innovation fit.
Resumo:
To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
This study examines the case of Chinese consumer's intention to adopt the upcoming mobile technology, 3G. The qualitative study involved 45 in-depth intervie3ws undertaken in three major Chemise cities to explore what perceptions, beliefs and attitudes will influence their decisions about adopting 3G. Perceived beliefs about using 3G technology were found to be important determinants. Additionally, there was evidence of influences from their social network that could motivate the adoption behaviour, as well as influence from the secondary information sources, such as the media and the Internet. Finally, some constraints were identifies that may inhibit Chinese consumers' adoption of this technology.
Resumo:
Purpose : Effective flow of data and communication at every stage of a construction project is essential for achieving required coordination and collaboration between the project participants, leading to successful management of the projects. In present scenario, when project participants are geographically separated, adoption of information communication technology (ICT) enables such effective communication. Thus, the purpose of this paper is to focus on ICT adoption for building project management.---------- Design/methodology/approach : It is difficult to quantitatively evaluate the benefits of ICT adoption in the multiple enterprise scenario of building project management. It requires qualitative analysis based on the perceptions of the construction professionals. The paper utilizes interpretive structural modeling (ISM) technique to assess importance of perceived benefits and their driving power and dependence on other benefits.---------- Findings : The developed ISM model shows that all the categories of benefits, i.e. benefits related to projects, team management, technology, and organization are inter-related and cannot be achieved in isolation. But, organization- and technology-related benefits have high-driving power and these are “strategic benefits” for the project team organizations. Thus, organizations are required to give more attention on strategically increasing these benefits from application of ICT. Originality/value – This analysis provides a road map to managers or project management organizations to decide that if they are planning ICT adoption for achieving certain benefits then which are the other driving benefits that should be achieved prior to that and also which are the dependent benefits that would be achieved by default.
Resumo:
Individuals, organizations, and governments are increasingly becoming aware of the necessity of sustainability in living, organizing, performing, and managing work. In this context, “green IS” has become an established colloquial term, acknowledging that information technology, corporate information systems, and the surrounding practices are both a contributor to the sustainability challenge and a potential enabler for green and sustainable practices. To date, however, there are few reported studies on the role of information systems for the challenge, and solution, of sustainability. This paper presents results from a case study of a world-wide operating IT software solution provider that is engaged in the development and adoption of sustainable practices. Our study suggests that the adoption of sustainable practices comes along with a number of particularities. We found information technology to be a key enabler of transparency about the progress of sustainability operations. We further found personal, motivator factors as well as organizational factors such as business inclusion, strategy definition, and a dialectic top-management and bottom-up support, to play a role in enabling a company to manage their sustainability. We describe a set of conjectures forthcoming from our case analysis, and detail some implications for further research in this area.
Resumo:
E-commerce technologies such as a website, email and the use of web browsers enables access to large amounts of information, facilitates communication and provides niche companies with an effective mechanism for competing with larger organisations world-wide. However recent literature has shown Australian SMEs have been slow in the uptake of these technologies. The aim of this research was to determine which factors were important in impacting on small firms' decision making in respect of information technology and e-commerce adoption. Findings indicate that generally the more a firm was concerned about its competitive position such a firm was likely to develop a web site. Moreover the 'Industry and Skill Demands' dimension suggested that as the formal education of the owner/manager increased, coupled with the likelihood that the firm was in the transport and storage or communication services industries, and realising the cost of IT adoption was in effect an investment, then such a firm would be inclined to develop a web site.
Resumo:
The technological environment in which contemporary small- and medium-sized enterprises (SMEs) operate can only be described as dynamic. The exponential rate of technological change, characterised by perceived increases in the benefits associated with various technologies, shortening product life cycles and changing standards, provides for the SME a complex and challenging operational context. The primary aim of this research was to identify the needs of SMEs in regional areas for mobile data technologies (MDT). In this study a distinction was drawn between those respondents who were full-adopters of technology, those who were partial-adopters, and those who were non-adopters and these three segments articulated different needs and requirements for MDT. Overall, the needs of regional SMEs for MDT can be conceptualised into three areas where the technology will assist business practices; communication, e-commerce and security
Resumo:
Queensland University of Technology (QUT) is a large multidisciplinary university located in Brisbane, Queensland, Australia. QUT is increasing its research focus and is developing its research support services. It has adopted a model of collaboration between the Library, High Performance Computing and Research Support (HPC) and more broadly with Information Technology Services (ITS). Research support services provided by the Library include the provision of information resources and discovery services, bibliographic management software, assistance with publishing (publishing strategies, identifying high impact journals, dealing with publishers and the peer review process), citation analysis and calculating authors’ H Index. Research data management services are being developed by the Library and HPC working in collaboration. The HPC group within ITS supports research computing infrastructure, research development and engagement activities, researcher consultation, high speed computation and data storage systems , 2D/ 3D (immersive) visualisation tools, parallelisation and optimization of research codes, statistics/ data modeling training and support (both qualitative and quantitative) and support for the university’s central Access Grid collaboration facility. Development and engagement activities include participation in research grants and papers, student supervision and internships and the sponsorship, incubation and adoption of new computing technologies for research. ITS also provides other services that support research including ICT training, research infrastructure (networking, data storage, federated access and authorization, virtualization) and corporate systems for research administration. Seminars and workshops are offered to increase awareness and uptake of new and existing services. A series of online surveys on eResearch practices and skills and a number of focus groups was conducted to better inform the development of research support services. Progress towards the provision of research support is described within the context organizational frameworks; resourcing; infrastructure; integration; collaboration; change management; engagement; awareness and skills; new services; and leadership. Challenges to be addressed include the need to redeploy existing operational resources toward new research support services, supporting a rapidly growing research profile across the university, the growing need for the use and support of IT in research programs, finding capacity to address the diverse research support needs across the disciplines, operationalising new research support services following their implementation in project mode, embedding new specialist staff roles, cross-skilling Liaison Librarians, and ensuring continued collaboration between stakeholders.